Supporting Information for

Improved Electrode Reversibility of Anionic Redox with Highly Concentrated Electrolyte Solution and Aramid-Coated Polyolefin Separator

Nanaka Shimada,¹ Yosuke Ugata,^{1, 2} Satoshi Nishikawa,³ Daisuke Shibata,⁴ Toshiaki Ohta,⁴ and Naoaki Yabuuchi^{1, 2*}

¹Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

²Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama

National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

³Battery Materials Business Department, Teijin Limited, 2-1 Hinode-cho, Iwakuni, Yamaguchi 740-8511, Japan

⁴SR Center, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

*corresponding author, e-mail: yabuuchi-naoaki-pw@ynu.ac.jp

Supporting Figures

Figure S1. STEM images of nanosized $Li_{1.14}Ti_{0.29}Mn_{0.57}O_2$ with different magnifications. FFT analysis of STEM image with corresponding *d*-spacing is also shown.

Figure S2. (a-c) Electrochemical properties of as-prepared and $Li_{1.14}Ti_{0.29}Mn_{0.57}O_2$ treated by lowenergy (300 rpm) and high-energy (600 rpm) milling in Li cells at room temperature. (d) Discharge capacity retention of nanosized $Li_{1.14}Ti_{0.29}Mn_{0.57}O_2$ with HCE and glass fiber filter.

Figure S3. Rate-capability of nanosized $Li_{1.14}Ti_{0.29}Mn_{0.57}O_2$ in (left) 1 M LiPF₆ in EC/DMC and (right) LiFSA:DMC = 1:1.1 in a molar ratio. The cells were charged to 4.8 V at a rate of 50 mA g⁻¹ and held at 4.8 V for 1 h, and then discharged at different rates.

Figure S4. DSC curves of different electrolyte solutions without the charged electrode.