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In this support information, we provide the formulas for calculating capacitance, the 

input data used for training the machine learning models and the methodology of Gaussian 

Process Regression (GPR). All the data are calculated from the CV curves collected from the 

literature. [1-7]

Capacitive behavior

The specific integral capacitance is given from the CV curves by
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where υ is the scan rate (V/s), i is the electrical current, m is the electrode mass, ΔV is the 

potential window, is the average current, Δt=ΔV/υ is charging/discharging time, and  stands 𝐼 ̿ 𝐶𝑠𝑝

for specific integral capacitance of the electrode.

The energy density is defined as

 (S2)
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where Ccell is the specific capacitance of a two-electrode symmetrical supercapacitor. The 
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power density is calculated from
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Gaussian Process Regression (GPR) models 

GPR is a non-parametric Bayesian method for solving regression problems.[8, 9] The 

supervised ML can capture different kinds of relationships by using an appropriate kernel to 

capture the unknown relations between the independent and dependent variables.[10] By 

introducing a theoretically infinite number of parameters, kernels are widely used in supervised 

ML methods including not only GPR but also support vector machine (SVM), principal 

components analysis (PCA), canonical correlation, and ridge regression. The kernel functions 

empower the ML methods to operate in a high-dimensional, implicit feature space by 

computing the inner products between the images of all pairs of data in the feature space.

In this work, the predictors used in regression are all standardized, so they are unitless 

values in regression. 𝑋 = [𝑧1,𝑧2,…,𝑧𝑛]

(S4)
𝑧𝑖 =

𝑥𝑖 ‒ 𝜇𝑖

𝜎𝑖
  

where  are the mean and standard deviation of original input predictor ), so they are 𝜇𝑖, 𝜎𝑖 𝑥𝑖

unitless values in the model.

Specifically, GPR provides the mapping from a predictor matrix  to a 𝑋 = [𝑥1,𝑥2,…,𝑥𝑛]

response vector y.[9, 11, 12]. Consider one input observation  (in this work, 𝑥 = [𝑧1,𝑧2,…,𝑧𝑛]

, the standardized input observation of ), and its 
𝑥 = [𝑧𝜈,  𝑧𝑆𝑚𝑖𝑐𝑟𝑜

,  𝑧𝑆𝑚𝑒𝑠𝑜
] [𝜈,𝑆𝑚𝑖𝑐𝑟𝑜, 𝑆𝑚𝑒𝑠𝑜]

corresponding  response value y, the mapping is assumed to be an unknown function, 

, where  is an independent zero-mean Gaussian noise with a standard 𝑦 = 𝑓(𝑥) + 𝜀 𝜀~𝑁(0, 𝜎2)

deviation of . GPR defines a probability distribution with function𝜎

(S5)𝑓(𝑥)~𝑀𝑁(𝑚(𝑥),𝜅(𝑥,𝑥')) 



where  and   are the mean and covariance functions:𝑚(𝑥) 𝜅(𝑥,𝑥')

(S6){𝑚(𝑥) = 𝐸[𝑓(𝑥)] 𝜅(𝑥,𝑥') = 𝐸[(𝑓(𝑥) ‒ 𝑚(𝑥))(𝑓(𝑥') ‒ 𝑚(𝑥'))]  

Usually, the mean function is assumed to be a basis function in the form as:

(S7)𝑚(𝑥) = 𝐻(𝑥)𝛽

where  is the basis matrix,  is a vector of basis coefficients. 𝐻(𝑥) 𝛽

Common selections of the basis matrix include the constant basis ( ), the linear 𝐻 = 1

basis ( , and the ‘pure Quadratic’ basis:𝐻 = [1,𝑋])

(S8)𝐻 = [1,𝑋,𝑋2]

where  is half-vectorization of the quadratic form of the predictors.𝑋2

The prediction mean  and variance  of the response value at a given point  are:�̂� 𝑦𝑠𝑑 𝑥 ∗

(S9)�̂�(𝑥 ∗ ) = 𝑚(𝑥 ∗ ) + 𝐾(𝑥 ∗ ,𝑋)𝑇[𝐾(𝑋.𝑋) + 𝜎2𝐼𝑛] ‒ 1(𝑦 ‒ 𝑢) 

(S10)𝑦𝑠𝑑 = 𝐾(𝑥 ∗ ,𝑥 ∗ ) ‒ 𝐾(𝑥 ∗ ,𝑋)𝑇[𝐾(𝑋.𝑋) + 𝜎2𝐼𝑛] ‒ 1𝐾(𝑋,𝑥 ∗ )

where 

 (S11)𝐾(𝑥 ∗ ,𝑋) = [𝜅(𝑥 ∗ ,𝑥1),𝜅(𝑥 ∗ ,𝑥2),…,𝜅(𝑥 ∗ ,𝑥𝑛)] 

The covariance function (or kernel function) is the major component of a GP model. Under the 

stationary condition, , where  being a variance parameter, which is the 𝜅(𝑥,𝑥') = 𝜎2𝑓𝜅(𝑥 ‒ 𝑥') 𝜎2

signal standard deviation and  is a correlation function, with . The covariance 𝑓𝜅 𝑓𝜅(0) = 1

function is assumed to be isotropic, i.e., , where  𝜅(𝑥,𝑥') = 𝜎2𝑓𝜅(𝑑)
 𝑑 = ||𝑥 ‒ 𝑥'|| =

𝑛

∑
𝑖 = 1

(𝑥𝑖 ‒ 𝑥'
𝑖)2

being the Euclidean distance between  and . The frequently used covariance functions 𝑥 𝑥'

include power exponential correlation, Matérn correlation and Rational Quadratic 

correlation.[9] We can see that the correlation function can be normalized by a length scale . 𝛾

so  

(S12)𝜅(𝑥,𝑥') = 𝜎2𝑓𝜅(𝑥 ‒ 𝑥') = 𝜎2𝑓𝜅(𝑑) = 𝜎2𝑓𝜅0(𝑟) 



where  being the related radius.
𝑟 =

𝑑
𝛾

=
|𝑥 ‒ 𝑥'|

𝛾

It’s also possible to use a separate length scale  for each predictor m, called automatic 𝛾𝑚

relevance determination (ARD). This can be done by replacing all the related distance  by 
𝑑
𝛾

related radius r with separate length scale for each predictor:  

(S13)
𝑟 =

𝐷

∑
𝑚 = 1

(𝑥𝑖𝑚 ‒ 𝑥𝑗𝑚)2

𝛾 2
𝑚

The power exponential correlation kernel is given by:

 (S14)𝜅(𝑥,𝑥') = 𝜎2𝑒𝑥𝑝𝑒𝑥𝑝 { ‒ (𝑟)𝛼} 

Where  is the signal standard deviation,  is the roughness parameter of the kernel 𝜎 𝛼 ∈ (0,2]

function. When , the kernel function is called Squared Exponential Kernel or Gaussian 𝛼 = 2

kernel, which is infinitely differentiable.

The Matérn correlation kernel is

(S15)
𝜅(𝑥,𝑥') = 𝜎2 1

2𝛼 ‒ 1Γ(𝛼)
(𝑟)𝛼Κ𝛼(𝑟) 

where   are the modified Bessel function of the second kind and the roughness parameter. Κ𝛼,𝛼

This kernel is  differentiable, where  means the ceiling integer of .  are most ⌈α⌉ ‒ 1 ⌈α⌉ 𝛼
𝛼 =

3
2

 𝑜𝑟
5
2

frequently used Matérn kernels. When , it becomes the exponential kernel function. When 
 𝛼 =

1
2

, it converges to the Gaussian kernel. 𝛼→∞

The Rational Quadratic correlation kernel has the following form

(S16)
𝜅(𝑥,𝑥') = 𝜎2(1 +

𝑟2

2𝛼) ‒ 𝛼 

where  is a positive-valued scale-mixture parameter. This kernel is infinitely differentiable as 𝛼

the Gaussian kernel. It can be interpreted as an infinite sum of different Gaussian kernels with 

different characteristic length scales. Here,  means the weighting between different length 𝛼



scales. When , it converges to the Gaussian kernel.𝛼→∞

In this work, we have tested all these covariance functions except exponential 

correlation, which is not smooth, and using the ARD kernels since it’s clear that the scan rate 

needs a different scaling length comparing to the surface area.

Fig S1 Correlation of the specific capacitance-scan rate relationship based on a semi-
empirical physical model (Eqn (1)) for the carbon materials with enough data points.

Fig S2 The specific capacitance versus the scan rate predicted by PhysGPR with non-ARD 
Matérn 3/2 kernel, shows strong overfitting. The specific surface areas of electrode 
materials are: Data Set I-1: , ; Data Set I-2: 𝑆𝑚𝑖𝑐𝑟𝑜 = 115 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1158 𝑚2/𝑔

, ; and Data Set I-3: , .  𝑆𝑚𝑖𝑐𝑟𝑜 = 636 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 442 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 735 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 1200 𝑚2/𝑔

Data Set II-1: , , Data Set II-2: , 𝑆𝑚𝑖𝑐𝑟𝑜 = 579 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 83 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 481 𝑚2/𝑔

, Data Set II-3: , , Data Set II-4: 𝑆𝑚𝑒𝑠𝑜 = 193 𝑚2/𝑔 𝑆𝑚𝑖𝑐𝑟𝑜 = 200𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 900 𝑚2/𝑔

, ..𝑆𝑚𝑖𝑐𝑟𝑜 = 0 𝑚2/𝑔 𝑆𝑚𝑒𝑠𝑜 = 24 𝑚2/𝑔

Table S1 Dataset for the capacitive performance of carbon electrodes. Columns: : specific 𝐶𝑠𝑝

capacitance. E: Energy density. P: Power density. : Specific micropore surface area 𝑆𝐴𝑚𝑖𝑐𝑟𝑜



(d<2nm) : specific mesopore surface area (2nm<d<50nm) : cyclic voltammetry scan 𝑆𝐴𝑚𝑒𝑠𝑜 𝜈

rate

# Csp/(F/g) E/(Wh/kg) P/(kW/kg) SAmicro/(m2/g) SAmeso/(m2/g) υ/(mV/s)

1 0 0 0 0 0 0

2 0 0 0 0 0 5

3 0 0 0 0 0 10

4 188.58 6.548 0.118 1990 879 5

5 232.27 8.065 0.145 636 442 5

6 222.77 7.735 0.278 636 442 10

7 202.29 7.024 0.506 636 442 20

8 185.15 6.429 1.157 636 442 50

9 155.41 5.396 1.943 636 442 100

10 185.11 6.428 0.116 713 290 5

11 170.51 5.921 0.213 457 126 10

12 101.47 3.523 1.268 457 126 100

13 160.84 5.585 0.201 429 188 10

14 115.52 4.011 1.444 429 188 100

15 175.29 6.086 0.219 481 193 10

16 141.55 4.915 1.769 481 193 100

17 253.90 8.816 0.317 1118 504 10

18 203.05 7.050 2.538 1118 504 100

19 224.15 7.783 0.056 735 1200 2

20 202.99 7.048 0.127 735 1200 5

21 189.89 6.593 0.237 735 1200 10

22 176.24 6.119 0.441 735 1200 20

23 144.14 5.005 0.901 735 1200 50

24 113.60 0.394 0.142 735 1200 100



25 241.54 8.387 0.151 1506 269 5

26 212.44 7.376 0.266 1506 269 10

27 207.12 7.192 0.518 1506 269 20

28 197.94 6.873 1.237 1506 269 50

29 198.00 6.875 2.475 1506 269 100

30 182.58 6.340 0.114 437 10 5

31 161.70 5.615 1.011 437 10 50

32 158.97 5.520 1.987 437 10 100

33 221.86 7.703 0.139 501 25 5

34 191.76 6.658 1.198 501 25 50

35 182.59 6.340 2.282 501 25 100

36 159.09 5.524 0.099 579 83 5

37 139.68 4.850 0.873 579 83 50

38 136.66 4.745 1.708 579 83 100

39 116.85 4.057 0.029 0 24 2

40 79.11 2.747 0.049 0 24 5

41 68.03 2.362 0.085 0 24 10

42 61.20 2.125 0.153 0 24 20

43 53.48 1.857 0.334 0 24 50

44 46.58 1.617 0.582 0 24 100

45 41.30 1.434 1.033 0 24 200

46 31.42 1.091 1.964 0 24 500

47 257.94 8.956 0.064 115 1158 2

48 244.31 8.483 0.153 115 1158 5

49 238.34 8.276 0.298 115 1158 10

50 232.37 8.068 0.581 115 1158 20

51 224.65 7.800 1.404 115 1158 50



52 216.90 7.531 2.711 115 1158 100

53 207.36 7.200 5.184 115 1158 200

54 187.26 6.502 11.704 115 1158 500

55 179.60 6.236 0.022 120 216 1

56 172.40 5.986 0.043 120 216 2

57 166.30 5.774 0.104 120 216 5

58 155.00 5.382 0.194 120 216 10

59 211.60 7.347 0.026 107 315 1

60 201.60 7.000 0.050 107 315 2

61 184.20 6.396 0.115 107 315 5

62 172.60 5.993 0.216 107 315 10

63 277.00 9.618 0.035 153 553 1

64 259.60 9.014 0.065 153 553 2

65 229.50 7.969 0.143 153 553 5

66 198.10 6.878 0.248 153 553 10

67 280.10 9.726 0.035 200 900 1

68 273.5 9.497 0.068 200 900 2

69 265.2 9.208 0.166 200 900 5

70 250.1 8.684 0.313 200 900 10

Note:1-3: Artificial zero surface area points. 4-10[1]; 11-18[2]; 19-24[3]; 25-29[4]; 30-

38[5]; 39-54[6]; 55-70[7];
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