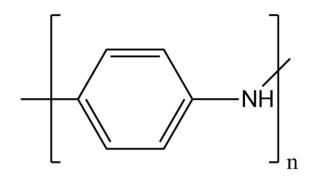
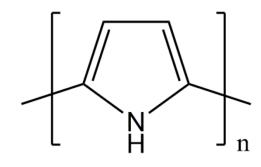
Supplementary Material for

The Role of Graphene in New Thermoelectric Materials

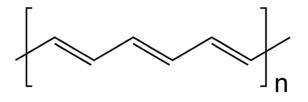
Rafiq Mulla^{1*}, Alvin Orbaek White¹, Charles W. Dunnill^{1,2} and Andrew R. Barron^{1,3,4,5}*

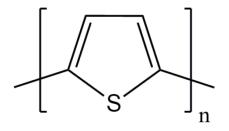

¹Energy Safety Research Institute, Swansea University Bay Campus, Swansea, SA1 8EN, UK
²Ceres Power Limited, Horsham, England, UK
³Arizona Institute for Resilient Environments and Societies (AIRES), University of Arizona, Tucson, AZ 85721, USA
⁴Department of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
⁵Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam

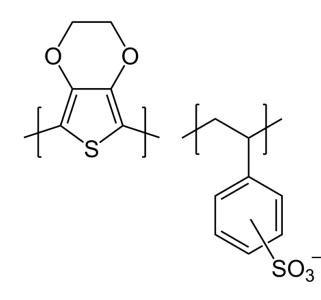
*E-mail: ARB <u>a.r.barron@swansea.ac.uk</u>


RM rafiq.mulla@swansea.ac.uk

<u>Chemical structures of some polymers used in thermoelectric applications</u>


(a) Polyaniline (PANI)


(b) Polypyrrole (PPy)


(c) Polyacetylene (PA)

(d) Polythiophene (PTH)

(e) Poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS)

