Supporting Information

(Chlorosulfonyl)(trifluoromethanesulfonyl)imide — A Versatile Building Block for Battery Electrolytes

Letao Jin, Ziyu Song, Heng Zhang*, Zhibin Zhou, Wenfang Feng*

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

*Corresponding authors

Prof. Heng Zhang - E-mail: hengzhang2020@hust.edu.cn Prof. Wenfang Feng - E-mail: fengwenfang@hust.edu.cn

List of contents

1.	Μ	Materials and Characterizations				
2.	2. Experimental Details					
2	2.1	Synthesis of zwitterion compounds	5			
2	2.2	Chemical reactions between H[CITFSI] and tertiary amines	6			
3	Su	upplementary Schemes, Tables and Figures	.7			
Ref	ere	ences	3			

1. Materials and Characterizations

Materials. Acetonitrile (MeCN, Sinopharm Chemical Reagent Co., Ltd), dichloromethane (Sinopharm Chemical Reagent Co., Ltd), methyl tertiary butyl ether (Sinopharm Chemical Reagent Co., Ltd), dimethylethylamine (DMEA, **4a**, Shanghai Aladdin Biochemical Technology Co., Ltd.), diethylmethylamine (DEMA, **4b**, Shanghai Aladdin Biochemical Technology Co., Ltd.), triethylamine (TEA, **4c**, Shanghai Aladdin Biochemical Technology Co., Ltd.), triethylamine (TEA, **4c**, Shanghai Aladdin Biochemical Technology Co., Ltd.), pyridine (Py, **4e**, Shanghai Aladdin Biochemical Technology Co., Ltd.), 2-methylpyridine (MPy, **4f**, Shanghai Aladdin Biochemical Technology Co., Ltd.), and 2,6-dimethylpyridine (DMPy, **4g**, Shanghai Aladdin Biochemical Technology Co., Ltd.), thionyl chloride (SOCl₂, Sinopharm Chemical Reagent Co., Ltd.), chlorosulfonic acid (CISO₃H, Shanghai Aladdin Biochemical Technology Co., Ltd.) and trifluoromethanesulfonamide (CF₃SO₂NH₂, Solvay). All the solvents were dried and purified using standard procedures before use.⁴

Structural characterizations. The spectra of ¹H- (399.65 MHz), ¹⁹F- (376.05 MHz), and ¹³C- (101.00 MHz) nuclear magnetic resonance (NMR) were recorded on a Bruker AV400 spectrometer using acetone- d_6 as the deuterated solvent. Chemical shift values are reported in ppm with respect to tetramethylsilane (TMS) internal reference for ¹H and ¹³C NMR and external reference trichlorofluoromethane (CCl₃F) in acetone- d_6 for ¹⁹F NMR. Mass spectra characterization was performed on a high-performance liquid chromatography-electrospray time-of-flight high-resolution mass spectrometer (Agilent 1100 LC/MSD, Agilent, USA). The sample (ca. 8–10 mg) was dissolved in acetonitrile or methanol (300 µL). Infrared spectral characterization was performed on a Fourier transform infrared spectroscopy (FT-IR, Bruker Equinox 55, Bruker, Germany) with the wavenumber ranging from 4000 to 400 cm⁻¹.

Single-crystal X-ray diffraction (XRD) characterizations. Single-crystal XRD characterizations were performed on a single-crystal diffractometer (XtaLAB PRO MM007HF Cu, Rigaku, Japan). The analytical software (Olex2) was used to analyze the single crystal structure data of the compound,⁵ and the open-source software Diamond was used to draw the oak ridge thermal ellipsoid plot diagram of the single crystal structure of the compound.⁶ The crystallographic data (*i.e.*, CCDC 2218540 and 2218543) for this work could be accessed free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB2; fax: +44 1223 336033.

Thermal properties. Thermogravimetric analysis (TGA) characterizations were performed on a thermogravimetric analyzer (Diamond TG/DTA, PerkinElmer Instruments, USA). The sample (ca. 5–10 mg) was put into an aluminum pan and heated at a ratio of 10 °C min⁻¹ from 30 to 800 °C under a flow of argon. The temperature at which 5% weight lost was defined as the decomposition temperature (T_d). Differential scanning calorimetry (DSC) characterization was acquired on a Netzsch DSC instrument (DSC 200 F3, Netzsch, Germany). Following the initial cooling scan from ambient temperature to –70 °C, two continuous cooling-heating scans from –70 to 150 °C were applied and the scan rates for both cooling and heating processes were kept at 10 °C min⁻¹. The onset and the peak of heat capacity changes were used to define the melting point (T_m).

General procedure for experimental of hydrolysis. Hydrolysis of H[CITFSI] and as-prepared zwitterion compounds (6c and 6e) was carried out in 25 mL sealed glass bottle, and their experimental steps were

similar. In a typical experiment (*i.e.*, H[CITFSI]), to a stirred solution of H[CITFSI] (1.25 g, 5 mmol) in dichloromethane (15 mL), a certain amount of deionized water (H_2O , 9 mg, 5 mmol) was added. The resulting mixture was left stirring under room temperature for required durations, and then subjected to NMR characterizations with co-axial NMR tubes, as described in our previous work.⁴

2. Experimental Details

2.1 Synthesis of zwitterion compounds

$$F_{3}C \xrightarrow{O}_{i} = N \xrightarrow{O}_{i} = CI + 2 \xrightarrow{R^{2}}_{i} \xrightarrow{R^{1}}_{i} \xrightarrow{MeCN} F_{3}C \xrightarrow{O}_{i} \xrightarrow{O$$

First, (chlorosulfonyl)(trifluoromethanesulfonyl)imide (H[N(SO₂Cl)(SO₂CF₃)], H[CITFSI]) was synthesized following the procedures reported in previous work.¹ Typically, to a stirred flask containing a predetermined amount of CF₃SO₂NH₂ (40.04 g, 0.27 mol), the solution of ClSO₃H (44.25 g, 0.38 mol) and SOCl₂ (73.71 g, 0.62 mol) was added at room temperature. The resulting mixture was left under reflux (*ca.* 120 °C) for 48 h. The product, H[CITFSI], was readily obtained as white solid (63.06 g, 0.26 mol; yield 95%) by distillation under vacuum (110 °C/2 mmHg).

Subsequently, the zwitterion compounds (6a, 6b, 6c, and 6e) were obtained from nucleophilic substitution reactions between H[CITFSI] and different tertiary amines. Taking compound 6c (i.e., $R^1 = R^2 =$ $R^3 = CH_2CH_3$) as an example, to a stirred solution of H[CITFSI] (5.20 g, 21 mmol) in acetonitrile (50 mL), TEA (4.34 g, 43 mmol) was added dropwise at room temperature, and the resulting solution was stirred for 24 h. The insoluble phase was removed by filtration, and the supernatant liquid phase was concentrated under reduced pressure. The as-obtained yellow solid was washed three times with deionized water (50 mL) and then recrystallized with dichloromethane/methyl tert-butyl ether, resulting in (triethylammoniosulfonyl)(trifluoromethanesulfonyl)imide **6c** as a white solid (3.93 g, 13 mmol, 60% yield). m.p. 62 °C; ¹H NMR (400 MHz; acetone-*d*₆; TMS; ppm): δ_H = 3.71 (q, *J*_{H-H} = 7.3 Hz, 6H, -CH₂CH₃), 1.49 (t, *J*_{H-H} = 7.4 Hz, 9H, $-CH_2CH_3$); ¹⁹F NMR (376 MHz; acetone- d_6 ; CFCl₃; ppm): δ_F = -79.9 (s, $-CF_3$); ¹³C NMR (101 MHz, acetone- d_6 ; ppm): δ_c = 205.2, 124.4, 121.2, 118.1, 114.9, 51.9, 29.5, 29.3, 29.1, 28.9, 28.7, 28.6, 28.4, 8.6; **FT**-IR (KBr, v_{max}, cm⁻¹): 3008 (m), 2953 (m), 1465 (s), 1377 (vs), 1349 (vs), 1346 (vs), 1216 (s), 1198 (vs), 1069 (vs), 1001 (s), 896 (m), 837 (m), 785 (s), 712 (s), 609 (s), 548 (s), 523 (vs); ESI-MS (m/z) calcd. for [C₇H₁₅F₃S₂O₄N₂ + Na]⁺: 335.0323; found: 335.0870.

Following a similar procedure described for **6c** except replacing TEA with DMEA, the (dimethylethylammoniosulfonyl)(trifluoromethanesulfonyl)imide **6a** was obtained as a white solid (3.51 g, 16 mmol, 78% yield). m.p. 56 °C; ¹H NMR (400 MHz; acetone- d_6 ; TMS; ppm): δ_H = 3.74 (q, J_{H-H} = 7.3 Hz, 2H, $-CH_2CH_3$), 3.30 (s, 6H, $-CH_3$), 1.61–1.50 (m, 3H, $-CH_2CH_3$); ¹⁹F NMR (376 MHz; acetone- d_6 ; CFCl₃; ppm): δ_F = -79.8 (s, $-CF_3$); ¹³C NMR (101 MHz, acetone- d_6 , ppm): δ_C = 56.1, 56.1, 56.1, 44.8, 44.7, 44.7, 8.2; FT-IR (KBr, v_{max} , cm⁻¹): 3056 (w), 3001 (w), 1620 (m), 1479 (s), 1379 (vs), 1201 (vs), 1070 (vs), 1006 (s), 975 (s), 910 (s), 783 (s), 746 (s), 621 (vs), 563 (s), 522 (s); ESI-MS (m/z) calcd. for [C₅H₁₁F₃N₂O₄S₂ + Na]⁺: 307.0010; found: 307.0525.

Following a similar procedure described for **6c** except replacing TEA with DEMA, the (diethylmethylammoniosulfonyl)(trifluoromethanesulfonyl)imide **6b** was obtained as a white solid (4.13 g, 14 mmol, 66% yield). m.p. 57 °C; ¹H NMR (400 MHz; acetone- d_6 ; TMS; ppm): δ_H = 3.73 (ddt, J_{H-H} = 32.2, 13.8, 7.2 Hz, 4H, $-CH_2CH_3$), 3.25 (s, 3H, $-CH_3$), 1.50 (tt, J_{H-H} = 7.3, 1.8 Hz, 6H, $-CH_2CH_3$); ¹⁹F NMR (376 MHz; acetone- d_6 ; CFCl₃; ppm): δ_F =-79.8 (s, $-CF_3$); ¹³C NMR (101 MHz, acetone- d_6 ; ppm): δ_C = 121.2, 118.1, 53.2, 53.2, 53.2, 43.5, 43.4, 43.4, 8.6; FT-IR (KBr, v_{max} , cm⁻¹): 3012 (m), 1635 (w), 1467 (s), 1361 (vs), 1195 (vs), 1085 (vs), 1002 (s), 962 (s), 877 (m), 779 (s), 715 (s), 617 (vs), 563 (vs), 518 (vs); ESI-MS (m/z) calcd. for

 $[C_6H_{13}F_3N_2O_4S_2 + Na]^+$: 321.0161; found: 321.0684.

Following a similar procedure described for **6c** except replacing TEA with Py, the (pyridiniosulfonyl)(trifluoromethanesulfonyl)imide **6e** was obtained as a white solid (2.43 g, 8.4 mmol, 42% yield). m.p. 117 °C; ¹H NMR (400 MHz; acetone- d_6 ; TMS; ppm): $\delta_H = 9.45$ (d, $J_{H-H} = 6.1$ Hz, 2H, —NCHCHCH—), 8.95 (t, $J_{H-H} = 8.1$ Hz, 1H, —NCHCHCH—), 8.43 (t, $J_{H-H} = 7.1$ Hz, 2H, —NCHCHCH—); ¹⁹F NMR (376 MHz; acetone- d_6 ; CFCl₃; ppm): $\delta_F = -79.5$ (s, —CF₃); ¹³C NMR (101 MHz, acetone- d_6 ; ppm): $\delta_C = 205.5$, 149.1, 140.9, 140.4, 128.3, 127.8, 127.7; FT-IR (KBr, v_{max} , cm⁻¹): 3136 (m), 3095 (w), 1613 (s), 1466 (s), 1393 (vs), 1346 (vs), 1216 (s), 1198 (vs), 1141 (s), 1060 (vs), 1044 (s), 864 (s), 794 (s), 774 (s), 677 (s), 627 (s), 605 (s), 563 (vs), 522 (s); ESI-MS (m/z) calcd. for [C₆H₅F₃N₂O₄S₂ + K]⁺: 328.9280; found: 328.9300.

2.2 Chemical reactions between H[CITFSI] and tertiary amines

The experimental procedures of H[CITFSI] with equal or twice amounts of tertiary amines (including DMEA, DEMA, TEA, DIPEA, Py, MPy, and DMPy) were carried out using an air-tight glass tube. In a typical example, H[CITFSI] (0.25 g, 1 mmol), acetonitrile (3 mL) and TEA (0.11 g, 1 mmol) were mixed under room temperature and left stirring under a given temperature (e.g., 20 or 80 °C) for 24 h. The reaction products were characterized by NMR characterizations with co-axial NMR tubes, as described in our previous work.⁴

3 Supplementary Schemes, Tables, and Figures

Scheme S1. Summary of the reactions discussed in this work.

Scheme S2. Negative delocalization of the sulfonimide-type zwitterion compounds.

Entry	Base	Base Temperat ure / °C	NMR yield / %			
Littiy	Dase		5 ª	6 ª	7 a	8 ª
S1	4a	20	87	4	0	9
S2	4b	20	90	5	0	5
S3	4c	20	88	0	0	12
S4	4d	20	93	0	0	7
S5	4e	20	79	0	0	21
S6	4f	20	88	0	1	11
S7	4g	20	84	0	0	16
S8	4a	80	65	0	0	35
S9	4b	80	79	0	0	21
S10	4c	80	88	0	0	12
S11	4d	80	4	0	11	85
S12	4e	80	80	0	0	20
S13	4f	80	82	0	3	15
S14	4g	80	90	0	0	10

 Table S1. Experimental results of the reaction of H[CITFSI] with equivalent amount of tertiary amines.

^a5, 6, 7, and 8 represent neutralization products, nucleophilic substitution products, elimination products, and trifluoromethanesulfonamide (CF₃SO₂NH₂), respectively.

Compounds	Abbreviation	Assignments	δ (¹ H NMR / ppm) / (J _{H-H} / Hz)	δ (¹⁹ F NMR / ppm) / (J _{F-F} / Hz)	Ref.
$CF_3SO_2N^{(-)}SO_2N^{(+)}(CH_3)_2(CH_2CH_3)$	6a	—С <u>Н</u> 2СН ₃	3.74 (q, 7.3)		This work
		—С <u>Н</u> 3	3.30 (s)		
			1.55 (m)		
		—С <u></u>		-79.8 (s)	
$CF_3SO_2N^{(-)}SO_2N^{(+)}(CH_3)(CH_2CH_3)_2$	6b	—С <u>Н</u> 2СН ₃	3.73 (ddt, 32.2, 13.8, 7.2)		This work
		—CH ₂ C <u>H</u> ₃	1.50 (tt, 7.3, 1.8)		
		—С <u>Н</u> 3	3.25 (s)		
		—С <u></u>		-79.8 (s)	
$CF_{3}SO_{2}N^{(-)}SO_{2}N^{(+)}(CH_{2}CH_{3})_{3}$	6c	—С <u></u> <i>Н</i> ₂ СН ₃	3.71 (q, 7.3)		This work
			1.49 (t, 7.4)		
		—С <u></u>		–79.9 (s)	
$CF_{3}SO_{2}N^{(-)}SO_{2}N^{(+)}C_{5}H_{5}$	6e	—NC <u>H</u> CHCH—	9.45 (d, 6.1)		This work
		—NCHCHC <u>H</u> —	8.95 (t, 8.1)		
		—NCHC <u>H</u> CH—	8.43 (t <i>,</i> 7.1)		
		—С <u></u>		–79.5 (s)	This work
				-79.5 (s)	and ref. 2
$(CF_3SO_2N=SO_2)_2$	7	—С <u></u> <i>Е</i> ₃		-77.7 (s)	This work
	_		/ >	–73.6 (s)	and ref. 2
CF ₃ SO ₂ NH ₂	8	—N <u>H</u> 2	8.02 (s)		This work
		CF	8.U7 (S)	90.7(c)	and ref. 4
				$-\delta U. / (S)$	I NIS WORK
				-01.2 (5)	anu rei. 4

Table S2. Assignments of the NMR spectral peaks for the species reported in this work.

Identification code	$C_7H_{15}F_3N_2O_4S_2$
Empirical formula	$C_7H_{15}F_3N_2O_4S_2$
Formula weight	312.33
Temperature/K	100.00 (10)
Crystal system	monoclinic
Space group	P21/n
a / Å	10.71570 (10)
b / Å	9.79090 (10)
c / Å	12.25870 (10)
α/°	90
β/°	97.9860 (10)
γ/°	90
Volume / ų	1273.67 (2)
Z	4
pcalcg/cm ³	1.629
μ / mm ⁻¹	4.282
F(000)	648
Crystal size / mm ³	0.28*0.22*0.18
Radiation	Cu Kα (λ = 1.54184)
2 $ heta$ range for data collection / $^\circ$	10.282 to 147.908
Index ranges	-13 ≤ h ≤ 13, -12 ≤ k ≤ 12, -15 ≤ l ≤ 14
Reflections collected	28042
Independent reflections	2572 [Rint = 0.0359, Rsigma = 0.0121]
Data/restraints/parameters	2572/0/167
Goodness-of-fit on F ²	1.071
Final R indexes [I >= 2σ (I)]	R ₁ = 0.0250, wR ₂ = 0.0662
Final R indexes [all data]	R ₁ = 0.0251, wR ₂ = 0.0663
Largest diff. peak/hole / e Å⁻³	0.39/-0.36

Table S3. Crystal data and structure refinement for $CF_3SO_2N^{(-)}SO_2N^{(+)}(CH_2CH_3)_3$ (6c).

Table S4. Bond length data for $CF_3SO_2N^{(-)}SO_2N^{(+)}(CH_2CH_3)_3$ (6c).

Atom	Atom	Length / Å	Atom	Atom	Length / Å
S2	02	1.4287	F2	C1	1.3341
S2	01	1.4285	F1	C1	1.3205
S2	N1	1.5839	N2	C4	1.5284
S2	C1	1.8323	N2	C7	1.5268
S1	04	1.4266	N2	C2	1.5276
S1	03	1.4251	C4	C5	1.5168
S1	N2	1.8668	C7	C6	1.5147
S1	N1	1.5710	C2	C3	1.5166
F3	C1	1.3294			

Table S5. Bond angle data for $CF_3SO_2N^{(-)}SO_2N^{(+)}(CH_2CH_3)_3$ (6c).

Atom	Atom	Atom	Angle / °	Atom	Atom	Atom	Angle / °
02	S2	N1	116.38	C7	N2	C4	112.12
02	S2	C1	104.99	C7	N2	C2	109.18
01	S2	02	118.70	C2	N2	S1	110.84
01	S2	N1	107.91	C2	N2	C4	108.84
01	S2	C1	104.09	S1	N1	S2	125.34
N1	S2	C1	102.71	C5	C4	N2	114.95
04	S1	N2	103.89	C6	C7	N2	115.24
04	S1	N1	116.77	F3	C1	S2	111.19
03	S1	04	119.07	F3	C1	F2	108.08
03	S1	N2	102.75	F2	C1	S2	109.29
03	S1	N1	109.43	F1	C1	S2	111.03
N1	S1	N2	102.19	F1	C1	F3	108.72
C4	N2	S1	107.22	F1	C1	F2	108.45
C7	N2	S1	108.64	C3	C2	N2	116.51

Table S6. Crystal data and structure refinement for $CF_3SO_2N^{(-)}SO_2N^{(+)}C_5H_5$ (6e).

Identification code	$C_6H_5F_3N_2O_4S_2$
Empirical formula	$C_6H_5F_3N_2O_4S_2$
Formula weight	290.24
Temperature/K	100.00 (10)
Crystal system	monoclinic
Space group	Сс
a / Å	6.92930 (10)
b / Å	15.0444 (2)
c / Å	10.37300 (10)
α/°	90
β/°	106.3650 (10)
γ/°	90
Volume / ų	1037.55 (2)
Z	4
ρcalcg/cm ³	1.858
μ / mm ⁻¹	5.220
F(000)	584.0
Crystal size / mm ³	0.25 × 0.2 × 0.15
Radiation	Cu Kα (λ = 1.54184)
2 Θ range for data collection / $^\circ$	11.764 to 147.786
Index ranges	-8 ≤ h ≤ 8, -18 ≤ k ≤ 18, -12 ≤ l ≤ 12
Reflections collected	9536
Independent reflections	2038 [Rint = 0.0296, Rsigma = 0.0153]
Data/restraints/parameters	2038/2/155
Goodness-of-fit on F ²	1.088
Final R indexes [I>=2σ (I)]	R ₁ = 0.0305, wR ₂ = 0.0789
Final R indexes [all data]	R ₁ = 0.0305, wR ₂ = 0.0789
Largest diff. peak/hole / e Å ⁻³	0.47/-0.35

Table S7. Bond length data for $CF_3SO_2N^{(-)}SO_2N^{(+)}C_5H_5$ (6e).

Atom	Atom	Length / Å	Atom	Atom	Length / Å
S1	02	1.422	N1	C2	1.365
S1	01	1.424	F3	C1	1.340
S1	N1	1.794	F1	C1	1.324
S1	N2	1.552	C6	C5	1.369
S2	03	1.423	F2	C1	1.314
S2	04	1.435	C2	C3	1.366
S2	N2	1.592	C5	C4	1.392
S2	C1	1.833	C4	C3	1.384
N1	C6	1.342			

Table S8. Bond angle data for $CF_3SO_2N^{(-)}SO_2N^{(+)}C_5H_5$ (6e).

Atom	Atom	Atom	Angle / °	Atom	Atom	Atom	Angle / °
02	S1	01	119.93	C2	N1	S1	118.1
02	S1	N1	102.07	N1	C6	C5	120.5
02	S1	N2	116.02	N1	C2	C3	119.2
01	S1	N1	102.67	S1	N2	S2	122.5
01	S1	N2	109.09	C6	C5	C4	119.0
N2	S1	N1	104.61	C3	C4	C5	119.6
03	S2	04	118.88	C2	C3	C4	120.0
03	S2	N2	110.59	F3	C1	S2	109.8
03	S2	C1	105.4	F1	C1	S2	111.4
04	S2	N2	115.47	F1	C1	F3	109.7
04	S2	C1	104.3	F2	C1	S2	108.5
N2	S2	C1	99.4	F2	C1	F3	108.0
C6	N1	S1	120.2	F2	C1	F1	109.3
C6	N1	C2	121.7				

Figure S1. ¹⁹F NMR spectra of the reactions between H[CITFSI] and equivalent amount of H_2O for 4 h (a) and 24 h (b) (reaction temperature: 20 °C; solvent: acetone- d_6).

-71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 Chemical shift / ppm

Figure S2. ¹H NMR (a) and ¹⁹F NMR (b) spectra of the reaction between compound **6c** and equivalent amount of H₂O for 24 h utilizing acetonitrile as solvent (reaction temperature: 20 °C; solvent: acetone- d_6).

Figure S3. ¹H NMR (a), ¹⁹F NMR (b), and ¹³C NMR (c) spectra of compound **6a** (solvent: acetone-*d*₆).

(Dimethylethylammoniumsulfonyl)(trifluoromethanesulfonyl)imide

Figure S4. Mass spectrum of compound 6a.

Figure S5. FT-IR spectrum of compound 6a.

Figure S6. ¹H NMR (a), ¹⁹F NMR (b), and ¹³C NMR (c) spectra of compound 6b (solvent: acetone-*d*₆).

(Diethylmethylammoniumsulfonyl)(trifluoromethanesulfonyl)imide

Figure S7. Mass spectrum of compound 6b.

Figure S8. FT-IR spectrum of compound 6b.

Figure S9. ¹H NMR (a), ¹⁹F NMR (b), and ¹³C NMR (c) spectra of compound 6c (solvent: acetone-d₆).

(Triethylammoniumsulfonyl)(trifluoromethanesulfonyl)imide

Figure S10. Mass spectrum of compound 6c.

Figure S11. FT-IR spectrum of compound 6c.

Figure S12. ¹H NMR (a), ¹⁹F NMR (b), and ¹³C NMR (c) spectra of compound **6e** (solvent: acetone- d_6).

(Pyridiniumsulfonyl)(trifluoromethanesulfonyl)imide

Figure S13. Mass spectrum of compound 6e.

Figure S14. FT-IR spectrum of compound 6e.

References

- 1. M. Beran, J. Příhoda and J. Taraba, *Polyhedron*, 2010, **29**, 991-994.
- 2. H. Roesky, M. Aramaki and L. Schönfelder, Z. Naturforsch., 1978, 33, 1072-1076.
- 3. W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, ButterwortH–Heinemann, 2012.
- 4. Z. Song, L. Zheng, P. Cheng, X. Wang, H. Wu, Q. Ma, J. Liu, W. Feng, J. Nie, H. Yu, X. Huang, M. Armand, H. Zhang and Z. Zhou, *Journal of Power Sources*, 2022, **526**, 231105.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- 6. S. Weber, *Journal of Applied Crystallography*, 1999, **32**, 1028.