# Enhanced Uranium Extraction Selectivity from Seawater Using Dopant Engineered Layered Double Hydroxides (Supporting Information)

Muhammad Zubair<sup>a</sup>, Hayden Ou<sup>a</sup>, Yuwei Yang<sup>a</sup>, Daniel T. Oldfield<sup>b</sup>, Lars Thomsen<sup>c</sup>, Bijil Subhash<sup>a</sup>, Jessica L. Hamilton<sup>c</sup>, Joshua T. Wright<sup>d</sup>, Nicholas M. Bedford<sup>a\*</sup>, Jessica Veliscek-Carolan<sup>b\*</sup>

<sup>a</sup> School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia <sup>b</sup> ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

<sup>o</sup>Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia

<sup>d</sup> Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States of America

\* Corresponding authors

### **Table of Contents**

| Composition of Simulated Seawater Solution                           | 2  |
|----------------------------------------------------------------------|----|
| Preparation of LDH materials for X-ray Absorption Spectroscopy (XAS) | 2  |
| Elemental Analysis                                                   | 2  |
| X-ray Diffraction                                                    | 3  |
| Fourier Transform Infra-Red Spectroscopy (FTIR)                      | 3  |
| Scanning Electron Microscopy                                         | 4  |
| Nitrogen Porosimetry                                                 | 7  |
| X-ray Absorption Near Edge Structure (XANES) of as-made LDH          | 8  |
| Adsorption Capacity                                                  | 9  |
| Adsorption Kinetics                                                  | 9  |
| Chemical Stability                                                   | 9  |
| Extended X-ray Absorption Fine Structure (EXAFS)                     | 10 |
| Wavelet transformation (WT) analysis                                 | 11 |
| EXAFS modelling Fits                                                 | 14 |
| Near Edge X-ray Absorption Fine Structure (NEXAFS)                   | 17 |
| SEM after U sorption                                                 | 18 |
| References                                                           | 19 |
|                                                                      |    |

## **Simulated Seawater**

| lon              | Metal Concentration | Compound                             |
|------------------|---------------------|--------------------------------------|
| Na⁺              | 3.5 wt%             | NaCl                                 |
| Mg⁺              | 1300 mg/L           | MgCl <sub>2</sub> .6H <sub>2</sub> O |
| Ca <sup>2+</sup> | 400 mg/L            | CaCl <sub>2</sub> .2H <sub>2</sub> O |
| K+               | 400 mg/L            | K <sub>2</sub> CO <sub>3</sub>       |
| V <sup>5+</sup>  | 1 mg/L              | $NH_4VO_3$                           |
| U <sup>6+</sup>  | 1 mg/L              | -                                    |

Table S1: Composition of Simulated Seawater Solution.

### Seawater collection location and conditions

Location: Coogee Beach, Sydney, NSW, Australia GPS: 33.9203° S, 151.2581° E Average Temperature (October 2021): 19°C Salinity: 36 % (g/L) (From NOAA ocean atlas)

### Preparation of LDH materials for X-ray Absorption Spectroscopy (XAS)

The amount of U loaded into the LDH materials (mg/g), as well as the amount of Mg, Al and dopant elements lost from the LDH materials during U sorption, are reported in Table S1.

| Sample | U loaded (mg/g) | Mg loss (%) | Al loss (%) | dopant loss (%) |
|--------|-----------------|-------------|-------------|-----------------|
| MgAl   | 10.5 ± 0.1      | 16          | 1           |                 |
| MgAlFe | 10.4 ± 0.1      | 14          | 1           | 1               |
| MgAlCe | 11.1 ± 0.1      | 16          | 1           | 0               |
| MgAlNd | $9.9 \pm 0.2$   | 18          | 1           | 1               |
| MgAlEu | 5.1 ± 0.1       | 10          | 2           | 2               |
| MgAITb | 4.2 ± 0.1       | 5           | 0           | 0               |

Table S2: U loading and Mg/Al/dopant loss of LDH samples for EXAFS and NEXAFS measurements

### **Elemental Analysis**

| Table  | S3: | Elemental   | analysis | of diaeste | d LDH sa | mples and | d resultina | chemical | compositions |
|--------|-----|-------------|----------|------------|----------|-----------|-------------|----------|--------------|
| I GDIO | 00. | Lionnonitai | analyoid | or argooro |          | mpioo and | roouning    | ononnour | compositione |

|        |             | weigh       | nt%        | chemical composition |                                                                                                                                                     |
|--------|-------------|-------------|------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Na          | Mg          | AI         | dopant               |                                                                                                                                                     |
| MgAl   | 3.2 ± 0.04  | 25.6 ± 0.1  | 7.1 ± 0.02 |                      | Mg <sub>0.8</sub> Al <sub>0.2</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.2</sub> .(NaNO <sub>3</sub> ) <sub>0.11</sub>                       |
| MgAlFe | 4.2 ± 0.01  | 18.0 ± 0.1  | 6.4 ± 0.1  | 4.8 ± 0.04           | Mg <sub>0.70</sub> Al <sub>0.22</sub> Fe <sub>0.08</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.30</sub> .(NaNO <sub>3</sub> ) <sub>0.17</sub> |
| MgAlCe | 4.9 ± 0.01  | 15.9 ± 0.04 | 5.2 ± 0.03 | 9.5 ± 0.04           | Mg <sub>0.72</sub> Al <sub>0.21</sub> Ce <sub>0.07</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.28</sub> .(NaNO <sub>3</sub> ) <sub>0.23</sub> |
| MgAlNd | 5.1 ± 0.003 | 16.6 ± 0.03 | 5.4 ± 0.02 | 9.4 ± 0.02           | Mg <sub>0.72</sub> Al <sub>0.21</sub> Nd <sub>0.07</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.28</sub> .(NaNO <sub>3</sub> ) <sub>0.23</sub> |
| MgAlEu | 5.1 ± 0.1   | 16.4 ± 0.1  | 5.6 ± 0.1  | 9.5 ± 0.1            | Mg <sub>0.71</sub> Al <sub>0.22</sub> Eu <sub>0.07</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.29</sub> .(NaNO <sub>3</sub> ) <sub>0.24</sub> |
| MgAlTb | 5.2 ± 0.1   | 16.0 ± 0.2  | 4.9 ± 0.1  | 7.2 ± 0.1            | Mg <sub>0.74</sub> Al <sub>0.21</sub> Tb <sub>0.05</sub> (OH) <sub>2</sub> (NO <sub>3</sub> ) <sub>0.26</sub> .(NaNO <sub>3</sub> ) <sub>0.26</sub> |

### **X-ray Diffraction**



Figure S1: XRD patterns of as-made LDH samples.

### Fourier Transform Infra-Red Spectroscopy (FTIR)

The FTIR-ATR spectra from 600 to 4000 cm<sup>-1</sup> of all LDHs are shown in Figure S2. The predominant absorbance band at 1350 cm<sup>-1</sup> and the smaller peak at 835 cm<sup>-1</sup> are attributed to the antisymmetric and symmetric stretch vibrations of the interlayer nitrate anion,<sup>1</sup> as seen in previously synthesised LDH materials.<sup>2,3</sup> Further, the absorbance bands at 1620 cm<sup>-1</sup> is due to the bending vibrations of water molecules in the interlayers. The characteristic band ~3400 cm<sup>-1</sup> was attributed to the OH stretching mode of M-OH layer and the shoulder peak ~3550 cm<sup>-1</sup> was assigned to stretching of interlayer water molecules. The absorbance bands below 800 cm<sup>-1</sup> are assigned to stretching of Mg-O(H) and Al-O(H).<sup>3,4</sup>



Figure S2: FTIR-ATR spectra of all LDH samples

# Scanning Electron Microscopy





Al Kα1

Na Kα1\_2



Figure S3: SEM/EDS images of MgAI LDH

50µm

Mg Kα1\_2



Al Kα1

Fe Kα1



\_50μm

50μm

Figure S4: SEM/EDS images of MgAIFe LDH







Figure S6: SEM/EDS images of MgAINd LDH



Figure S7: SEM/EDS images of MgAIEu LDH



Figure S8: SEM/EDS images of MgAITb LDH

The physicochemical properties of as-made LDH samples, measured via nitrogen porosimetry, are given in Table S4. Pore size was predominantly 5-10 nm for MgAlCe and MgAlNd, while larger mesopores with diameter 15-18 nm were present in MgAlTb and MgAlEu showed a broad pore size distribution from mesopores to macropores. Pore sizes ranging from 5-13 nm have been reported for previously synthesised MgAl LDHs,<sup>5,6</sup> consistent with the results in Table S3.

| Sample | BET surface<br>area (m²/g) | Pore Volume<br>(mL/g) | Pore size<br>(nm) |
|--------|----------------------------|-----------------------|-------------------|
| MgAl   | 0.4                        | 0.01                  | 6.2               |
| MgAlFe | 6.0                        | 0.05                  | 6.6               |
| MgAlCe | 15.1                       | 0.07                  | 6.7               |
| MgAlNd | 37.7                       | 0.16                  | 8.0               |
| MgAlEu | 25.7                       | 0.20                  | 15.6              |
| MgAITb | 17.4                       | 0.12                  | 14.8              |

Table S4: Physicochemical properties of LDH samples

The nitrogen adsorption-desorption isotherms of MgAlCe, MgAlNd and MgAlTb (Figure S9) were all Type IV with H2/H3 hysteresis, indicating the presence of mesopores in these samples.<sup>7</sup> In contrast, MgAlEu produced a Type III isotherm shape and showed some low pressure hysteresis, suggesting this sample was macroporous and may have undergone swelling during the nitrogen adsorption process.



Figure S9: Nitrogen adsorption-desorption isotherms (left) and pore size distributions (right) for LDH samples with BET surface area greater than 10 m<sup>2</sup>/g.





Figure S10: XANES of dopant elements in as-made LDH samples.

|            | Sillerin constants for My |      | J.     |
|------------|---------------------------|------|--------|
| Model      |                           | MgAl | MgAlNd |
| Langmuir   | C <sub>m</sub> (mg/g)     | 54.8 | 8.6    |
|            | b                         | 1.29 | 4.48   |
|            | RSS                       | 30.6 | 4.62   |
| Freundlich | b                         | 25.0 | 6.51   |
|            | n                         | 0.48 | 0.29   |
|            | RSS                       | 14.3 | 0.48   |

Table S5: Model isotherm constants for MgAI and MgAINd.

# **Adsorption Kinetics**



Figure S11: Pseudo second order kinetics fit for MgAl and MgAlNd with 3 ppm U in pH 8  $Na_2CO_3$  and V/m 1000.

### **Chemical Stability**



Figure S12: Percentage loss of Mg and Al from MgAl and MgAlNd LDH samples during capacity measurements. Loss of Nd was <1% for all V/m ratios.

### Extended X-ray Absorption Fine Structure (EXAFS)



Fourier-filtered k-space

#### **Wavelet Transformation**

The wavelet transformation (WT) can be used as an efficient tool to interpret the extended X-ray absorption fine structure (EXAFS) spectra. The WT analysis provides direct visualization in threedimension: the interatomic distance (R), the wavevector (k), and the WT modulus (the amplitude terms). This information is particularly important to perform nearest-neighbours analysis in the EXAFS.<sup>8</sup> We used Continuous Cauchy Wavelet Transformation (CCWT) to do the analysis. The resolution in k and R space can be controlled by the Cauchy parameter, **n** through the following equations:

$$[k - \Delta k, k + \Delta k] \times [R + \Delta R_1, R + \Delta R_2]$$
(1)

while

$$\Delta k = \frac{1}{R} \left( \frac{n}{2\sqrt{2n-1}} \right) \tag{2}$$

and

$$\Delta R_1 = R\left(\frac{1}{2n} - \frac{\sqrt{2n+1}}{2n}\right); \ \Delta R_2 = R\left(\frac{1}{2n} + \frac{\sqrt{2n+1}}{2n}\right)$$
(3)

Further,  $\Delta k$  and  $\Delta R$  are restricted by the Heisenberg uncertainty:  $\Delta k \Delta R \ge 1/4.^{9}$  The value of **n** determines the resolution as  $\Delta k$  and  $\Delta R$  are inversely proportional to each other. In present study, WTs were calculated with n = 200, such that for R values around 2 Å, the resolutions in the k and R spaces are, respectively,  $\Delta R \pm 0.1$  Å and  $\Delta k \pm 2.5$  Å<sup>-1</sup>



UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> standard (c) MgAI (d) MgAIFe (e) MgAICe (f) MgAINd (g) MgAIEu (h) MgAITb



Figure S15: U-L<sub>3</sub> Edge EXAFS wavelet transformation analysis (2.5-4 Å and  $k_2$ = 0-10) for (a) UO<sub>2</sub>CO<sub>3</sub> standard (b) UO<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> standard (c) MgAI (d) MgAIFe (e) MgAICe (f) MgAINd (g) MgAIEu (h) MgAITb



Figure S16: EXAFS spectra and best fit for MgAI, MgAIFe and MgAICe respectively in (a, b, c) R-space (d,e,f) real part of Fourier-filtered k-space (g,h,i) k space (k<sub>2</sub>-weighting)



Figure S17: EXAFS spectra and best fit for MgAlNd, MgAlEu and MgAlTb respectively in (a, b, c) R-space (d,e,f) real part of Fourier-filtered k-space (g,h,i) k space (k<sub>2</sub>-weighting)

| Shell              | CN              | R (Å)           | σ <sup>2</sup> x10 <sup>3</sup> (Å <sup>2</sup> ) | R-factor |
|--------------------|-----------------|-----------------|---------------------------------------------------|----------|
|                    |                 | MgAl            |                                                   |          |
| U-O <sub>ax</sub>  | 2 ٤             | 1.81 ± 0.007    | 2.1 ± 0.6                                         |          |
| U-O <sub>eq</sub>  | 4.40 ± 0.38     | 2.44 ± 0.008    | 2.1 *                                             |          |
| U-C                | 2.66 ± 0.6      | 2.93 ± 0.013    | 2.1*                                              | 0.0058   |
| U-U                | 1.49 ± 0.45     | 3.48 ± 0.041    | 2.1 ± 1.8                                         |          |
| U-Mg/Al            | 5.59 ± 1.2      | 3.93 ± 0.036    | 2.1 *                                             |          |
|                    |                 | MgAIF           | e                                                 |          |
| U-O <sub>ax</sub>  | 2 <sup> ξ</sup> | 1.80 ± 0.008    | 2.5 ± 0.6                                         |          |
| U-O <sub>eq</sub>  | 4.83± 0.43      | 2.43 ± 0.009    | 2.5*                                              |          |
| U-C                | 2.84 ± 0.74     | 2.93 ± 0.019    | 2.5*                                              | 0.0064   |
| U-U                | 1.42± 0.51      | 3.49 ± 0.04     | 3 ± 0.8                                           |          |
| U-Mg/Al            | 5.64 ± 1.5      | 3.94 ± 0.03     | 3*                                                |          |
|                    | <b>I</b>        | MgAIC           | e                                                 |          |
| U-O <sub>ax</sub>  | 2 <sup>ξ</sup>  | 1.83 ± 0.007    | 3.1 ± 0.6                                         |          |
| U-O <sub>eq</sub>  | 3.73 ± 0.35     | 2.46 ± 0.009    | 3.1*                                              |          |
| U-C                | 2.56 ± 0.60     | 2.95 ± 0.018    | 3.1*                                              | 0.0058   |
| U-U                | 1.80 ± 0.56     | 3.50 ± 0.032    | 3.2 ± 0.8                                         |          |
| U-Mg/Al            | 5.08 ± 1.4      | 3.96 ± 0.035    | 3.2*                                              |          |
|                    |                 | MgAIN           | d                                                 |          |
| U-O <sub>ax</sub>  | 2 <sup>ξ</sup>  | 1.81± 0.007     | 2 ± 0.6                                           |          |
| U-O <sub>eq</sub>  | 4.24 ± 0.37     | 2.44 ± 0.008    | 2*                                                |          |
| U-C                | 2.30 ± 0.64     | 2.93 ± 0.02     | 2*                                                | 0.0061   |
| U-U                | 1.50 ± 0.53     | 3.48 ± 0.042    | $3.3 \pm 0.9$                                     |          |
| U-Mg/Al            | 5.19 ± 1.42     | 3.94 ± 0.03     | 3.3                                               |          |
|                    |                 | MgAIE           | u                                                 |          |
| U-O <sub>ax</sub>  | 2 <sup>ξ</sup>  | 1.81 ± 0.007    | 1.4 ± 0.6                                         |          |
| U-O <sub>eq</sub>  | 4.05 ± 0.36     | 2.43 ± 0.009    | 1.4*                                              |          |
| U-C                | 1.90 ± 0.51     | 2.94 ± 0.02     | 1.4*                                              | 0.006    |
| U-U                | 1.13 ± 0.36     | $3.50 \pm 0.06$ | 3.8 ± 0.9                                         |          |
| U-Mg/Al            | 4.19 ± 1.31     | 3.95 ± 0.05     | 3.8*                                              |          |
|                    |                 | MgAIT           | b                                                 |          |
| U-O <sub>ax</sub>  | 2 <sup>٤</sup>  | 1.81 ± 0.01     | 1.6 ± 0.9                                         |          |
| U-O <sub>eq</sub>  | 3.60 ± 0.5      | 2.43 ± 0.01     | 1.6*                                              |          |
| U-C                | 1.82 ± 0.6      | 2.95 ±0.04      | 1.6*                                              | 0.014    |
| U-U                | $1.27 \pm 0.4$  | $3.53 \pm 0.06$ | 3.9 ± 1.1                                         |          |
| U-Mg/Al            | 3.21 ± 1.1      | 3.97 ± 0.07     | 3.9*                                              |          |
| <sup>۶</sup> fixed |                 |                 |                                                   |          |
| * Correlated       | d to same value |                 |                                                   |          |

Table S6: EXAFS fitting parameters for U-adsorbed LDH samples



### Near Edge X-ray Absorption Fine Structure

Figure S18: Normalized NEXAFS for (a) Mg K-edge (b) Al K-edge (c) O K-edge and (d) N K-edge (Dash lines represent before adsorption while solid lines depict after adsorption NEXAFS measurements)



Figure S19: SEM image and EDS maps of MgAINd after U loading

## References

- 1. Trivedi, M. K. & Dahryn Trivedi, A. B. Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment. *J Chromatogr Sep Tech* **06**, (2015).
- Ravuru, S. S., Jana, A. & De, S. Synthesis of NiAl- layered double hydroxide with nitrate intercalation: Application in cyanide removal from steel industry effluent. *J Hazard Mater* 373, 791–800 (2019).
- 3. Asiabi, H., Yamini, Y. & Shamsayei, M. Highly efficient capture and recovery of uranium by reusable layered double hydroxide intercalated with 2-mercaptoethanesulfonate. *Chemical Engineering Journal* **337**, 609–615 (2018).
- 4. Hu, Z., Song, X., Wei, C. & Liu, J. Behavior and mechanisms for sorptive removal of perfluorooctane sulfonate by layered double hydroxides. *Chemosphere* **187**, 196–205 (2017).
- 5. Benhiti, R. *et al.* Synthesis, characterization, and comparative study of MgAl-LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal. *Environ Sci Pollut Res Int* **27**, 45767–45774 (2020).
- 6. Zou, Y. *et al.* Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides for the Efficient Removal of U(VI) from Wastewater Solutions. *ACS Sustain Chem Eng* **5**, 1173–1185 (2017).
- Sing, K. S. W. *et al.* Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. *Pure and Applied Chemistry* 57, 603–619 (1985).
- 8. Muñoz, M., Farges, F. & Argoul, P. Continuous Cauchy wavelet transform of XAFS spectra. *Physica Scripta T* **T115**, 221–222 (2005).
- 9. Chui, C. K. Introduction to Wavelets. (Academic Press, 1992).