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Simulated Seawater

Table S1: Composition of Simulated Seawater Solution.

Seawater collection location and conditions
Location: Coogee Beach, Sydney, NSW, Australia
GPS: 33.9203° S, 151.2581° E
Average Temperature (October 2021): 19°C
Salinity: 36 % (g/L)  (From NOAA ocean atlas)

Preparation of LDH materials for X-ray Absorption Spectroscopy (XAS)

The amount of U loaded into the LDH materials (mg/g), as well as the amount of Mg, Al and dopant 
elements lost from the LDH materials during U sorption, are reported in Table S1.

Table S2: U loading and Mg/Al/dopant loss of LDH samples for EXAFS and NEXAFS measurements 

Sample U loaded (mg/g) Mg loss (%) Al loss (%) dopant loss (%)
MgAl 10.5 ± 0.1 16 1

MgAlFe 10.4 ± 0.1 14 1 1

MgAlCe 11.1 ± 0.1 16 1 0

MgAlNd 9.9 ± 0.2 18 1 1

MgAlEu 5.1 ± 0.1 10 2 2

MgAlTb 4.2 ± 0.1 5 0 0

Elemental Analysis

Table S3: Elemental analysis of digested LDH samples and resulting chemical compositions
 weight%
 Na Mg Al dopant

chemical composition

MgAl 3.2 ± 0.04 25.6 ± 0.1 7.1 ± 0.02  Mg0.8Al0.2(OH)2(NO3)0.2.(NaNO3)0.11

MgAlFe 4.2 ± 0.01 18.0 ± 0.1 6.4 ± 0.1 4.8 ± 0.04 Mg0.70Al0.22Fe0.08(OH)2(NO3)0.30.(NaNO3)0.17

MgAlCe 4.9 ± 0.01 15.9 ± 0.04 5.2 ± 0.03 9.5 ± 0.04 Mg0.72Al0.21Ce0.07(OH)2(NO3)0.28.(NaNO3)0.23

MgAlNd 5.1 ± 0.003 16.6 ± 0.03 5.4 ± 0.02 9.4 ± 0.02 Mg0.72Al0.21Nd0.07(OH)2(NO3)0.28.(NaNO3)0.23

MgAlEu 5.1 ± 0.1 16.4 ± 0.1 5.6 ± 0.1 9.5 ± 0.1 Mg0.71Al 0.22Eu0.07(OH)2(NO3)0.29.(NaNO3)0.24

MgAlTb 5.2 ± 0.1 16.0 ± 0.2 4.9 ± 0.1 7.2 ± 0.1 Mg0.74Al0.21Tb0.05(OH)2(NO3)0.26.(NaNO3)0.26

Ion Metal Concentration Compound
Na+ 3.5 wt% NaCl

Mg+ 1300 mg/L MgCl2.6H2O

Ca2+ 400 mg/L CaCl2.2H2O

K+ 400 mg/L K2CO3

V5+ 1 mg/L NH4VO3

U6+ 1 mg/L -
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X-ray Diffraction

Figure S1: XRD patterns of as-made LDH samples.

Fourier Transform Infra-Red Spectroscopy (FTIR)

The FTIR-ATR spectra from 600 to 4000 cm-1 of all LDHs are shown in Figure S2. The predominant 
absorbance band at 1350 cm-1 and the smaller peak at 835 cm-1 are attributed to the antisymmetric  
and symmetric stretch vibrations of the interlayer nitrate anion,1 as seen in previously synthesised LDH 
materials.2,3 Further, the absorbance bands at 1620 cm-1 is due to the bending vibrations of water 
molecules in the interlayers. The characteristic band ~3400 cm-1 was attributed to the OH stretching 
mode of M-OH layer and the shoulder peak ~3550 cm-1 was assigned to stretching of interlayer water 
molecules. The absorbance bands below 800 cm-1 are assigned to stretching of Mg-O(H) and Al-O(H).3,4 

Figure S2: FTIR-ATR spectra of all LDH samples 
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Scanning Electron Microscopy

 

Figure S3: SEM/EDS images of MgAl LDH

 

  Figure S4: SEM/EDS images of MgAlFe LDH
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Figure S5: SEM/EDS images of MgAlCe LDH

 

  Figure S6: SEM/EDS images of MgAlNd LDH
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Figure S7: SEM/EDS images of MgAlEu LDH

 

Figure S8: SEM/EDS images of MgAlTb LDH

Nitrogen Porosimetry
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The physicochemical properties of as-made LDH samples, measured via nitrogen porosimetry, are 
given in Table S4. Pore size was predominantly 5-10 nm for MgAlCe and MgAlNd, while larger 
mesopores with diameter 15-18 nm were present in MgAlTb and MgAlEu showed a broad pore size 
distribution from mesopores to macropores. Pore sizes ranging from 5-13 nm have been reported for 
previously synthesised MgAl LDHs,5,6 consistent with the results in Table S3. 

Table S4: Physicochemical properties of LDH samples

Sample BET surface 
area (m2/g)

Pore Volume 
(mL/g)

Pore size 
(nm)

MgAl 0.4 0.01 6.2
MgAlFe 6.0 0.05 6.6
MgAlCe 15.1 0.07 6.7
MgAlNd 37.7 0.16 8.0
MgAlEu 25.7 0.20 15.6
MgAlTb 17.4 0.12 14.8

The nitrogen adsorption-desorption isotherms of MgAlCe, MgAlNd and MgAlTb (Figure S9) were all 
Type IV with H2/H3 hysteresis, indicating the presence of mesopores in these samples.7 In contrast, 
MgAlEu produced a Type III isotherm shape and showed some low pressure hysteresis, suggesting 
this sample was macroporous and may have undergone swelling during the nitrogen adsorption 
process.

Figure S9: Nitrogen adsorption-desorption isotherms (left) and pore size distributions (right) for LDH 
samples with BET surface area greater than 10 m2/g.
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X-ray Absorption Near Edge Structure (XANES) of as-made LDH

Figure S10: XANES of dopant elements in as-made LDH samples.

Adsorption Capacity
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Table S5: Model isotherm constants for MgAl and MgAlNd.
Model  MgAl MgAlNd
Langmuir Cm (mg/g) 54.8 8.6
 b 1.29 4.48

RSS 30.6 4.62
Freundlich b 25.0 6.51
 n 0.48 0.29

RSS 14.3 0.48

Adsorption Kinetics

Figure S11: Pseudo second order kinetics fit for MgAl and MgAlNd with 3 ppm U in pH 8 Na2CO3 and 
V/m 1000. 

Chemical Stability

Figure S12: Percentage loss of Mg and Al from MgAl and MgAlNd LDH samples during capacity 
measurements. Loss of Nd was <1% for all V/m ratios.

Extended X-ray Absorption Fine Structure (EXAFS)
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Figure S13: U-L3 Edge EXAFS (a) EXAFS oscillations in k space (k2-weighting) (b) Real part of 
Fourier-filtered k-space
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Wavelet Transformation
The wavelet transformation (WT) can be used as an efficient tool to interpret the extended X-ray 
absorption fine structure (EXAFS) spectra. The WT analysis provides direct visualization in three-
dimension: the interatomic distance (R), the wavevector (k), and the WT modulus (the amplitude terms). 
This information is particularly important to perform nearest-neighbours analysis in the EXAFS.8 We 
used Continuous Cauchy Wavelet Transformation (CCWT) to do the analysis. The resolution in k and 
R space can be controlled by the Cauchy parameter, n through the following equations:

  (1)[𝑘 ‒ ∆𝑘 ,𝑘 + ∆𝑘 ] × [𝑅 + ∆𝑅1 ,𝑅 + ∆𝑅2 ]

while 

(2)
∆𝑘 =  

1
𝑅( 𝑛

2 2𝑛 ‒ 1)
and

 (3)
∆𝑅1 = 𝑅( 1

2𝑛
‒

2𝑛 + 1
2𝑛 ) ; ∆𝑅2 = 𝑅( 1

2𝑛
+

2𝑛 + 1
2𝑛 )  

Further, Δk and ΔR are restricted by the Heisenberg uncertainty: ΔkΔR ≥ 1/4.9 The value of n 
determines the resolution as Δk and ΔR are inversely proportional to each other. In present study, 
WTs were calculated with n = 200, such that for R values around 2 Å, the resolutions in the k and R 
spaces are, respectively, ΔR ± 0.1 Å and Δk  ± 2.5 Å–1
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Figure S14: U-L3 Edge EXAFS WT analysis (1-4 Å and k2= 0-10) for  (a) UO2CO3 standard (b) 
UO2(NO3)2 standard (c) MgAl (d) MgAlFe (e) MgAlCe (f) MgAlNd (g) MgAlEu (h) MgAlTb 
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Figure S15: U-L3 Edge EXAFS wavelet transformation analysis (2.5-4 Å and k2= 0-10) for  (a) 
UO2CO3 standard (b) UO2(NO3)2 standard (c) MgAl (d) MgAlFe (e) MgAlCe (f) MgAlNd (g) MgAlEu (h) 
MgAlTb 



14

Figure S16: EXAFS spectra and best fit for MgAl, MgAlFe and MgAlCe respectively in (a, b, c) R-

space (d,e,f) real part of Fourier-filtered k-space (g,h,i) k space (k2-weighting)
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Figure S17: EXAFS spectra and best fit for MgAlNd, MgAlEu and MgAlTb respectively in (a, b, c) R-

space (d,e,f) real part of Fourier-filtered k-space (g,h,i) k space (k2-weighting)
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Table S6: EXAFS fitting parameters for U-adsorbed LDH samples
Shell CN R (Å) σ2 x103 (Å2) R-factor

MgAl
U-Oax 2 ξ 1.81 ± 0.007 2.1 ± 0.6
U-Oeq 4.40 ± 0.38 2.44 ± 0.008 2.1 *
U-C 2.66 ± 0.6 2.93 ± 0.013 2.1*
U-U 1.49 ± 0.45 3.48 ± 0.041 2.1 ± 1.8
U-Mg/Al 5.59 ± 1.2 3.93 ± 0.036 2.1 *

0.0058

MgAlFe
U-Oax 2 ξ 1.80 ± 0.008 2.5 ± 0.6
U-Oeq 4.83± 0.43 2.43 ± 0.009 2.5*
U-C 2.84 ± 0.74 2.93 ± 0.019 2.5*
U-U 1.42± 0.51 3.49 ± 0.04 3 ± 0.8
U-Mg/Al 5.64 ± 1.5 3.94 ± 0.03 3*

0.0064

MgAlCe
U-Oax 2 ξ 1.83 ± 0.007 3.1 ± 0.6
U-Oeq 3.73 ± 0.35 2.46 ± 0.009 3.1*
U-C 2.56 ± 0.60 2.95 ± 0.018 3.1*
U-U 1.80 ± 0.56 3.50 ± 0.032 3.2 ± 0.8
U-Mg/Al 5.08 ± 1.4 3.96 ± 0.035 3.2*

0.0058

MgAlNd
U-Oax 2 ξ 1.81± 0.007 2 ± 0.6
U-Oeq 4.24 ± 0.37 2.44 ± 0.008 2*
U-C 2.30 ± 0.64 2.93 ± 0.02 2*
U-U 1.50 ± 0.53 3.48 ± 0.042 3.3 ± 0.9
U-Mg/Al 5.19 ± 1.42 3.94 ± 0.03 3.3

0.0061

MgAlEu
U-Oax 2 ξ 1.81 ± 0.007 1.4 ± 0.6
U-Oeq 4.05 ± 0.36 2.43 ± 0.009 1.4*
U-C 1.90 ± 0.51 2.94 ± 0.02 1.4*
U-U 1.13 ± 0.36 3.50 ± 0.06 3.8 ± 0.9
U-Mg/Al 4.19 ± 1.31 3.95 ± 0.05 3.8*

0.006

MgAlTb
U-Oax 2 ξ 1.81 ± 0.01 1.6 ± 0.9
U-Oeq 3.60 ± 0.5 2.43 ± 0.01 1.6*
U-C 1.82 ± 0.6 2.95 ±0.04 1.6*
U-U 1.27 ± 0.4 3.53 ± 0.06 3.9 ± 1.1
U-Mg/Al 3.21 ± 1.1 3.97 ± 0.07 3.9*

0.014

ξ fixed 
* Correlated to same value
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Near Edge X-ray Absorption Fine Structure

Figure S18: Normalized NEXAFS for (a) Mg K-edge (b) Al K-edge (c) O K-edge and (d) N K-edge 
(Dash lines represent before adsorption while solid lines depict after adsorption NEXAFS 
measurements)
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Figure S19: SEM image and EDS maps of MgAlNd after U loading
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