Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

3D-Hierarchical Flower Architecture of Anion Induced Layered Double Hydroxides for

Competing Anodic Reactions

Krishankant, Aashi, Baljeet Kaur, Jatin Sharma, Chandan Bera and Vivek Bagchi*

a. Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab 160062,

India *

Corresponding author: <u>vivekbagchi@gmail.com</u> , <u>bagchiz@inst.ac.in</u>

Section	Title		
Fig. S1	Wide scan XPS of S-CoFeLDH/NF & CoFeLDH/NF and High Resolution-XPS		
	of O1s		
Fig. S2	FESEM and EDX of CoFeLDH/NF with elemental mapping		
Fig. S3	FESEM and EDX of S-CoFeLDH/NF with elemental mapping		
Fig. S4	CV of CoFeLDH/NF and S-CoFeLDH/NF		
Fig. S5	TOF of S-CoFeLDH/NF, CoFeLDH/NF and RuO ₂		
Table. S1	Recently reported LDH based electrocatalyst for OER application		
Table. S2	LDH based catalyst for UOR		
Fig. S6	CV , C_{a} and Impedance curve for UOR		
Fig. S7	FESEM of S-CoFeLDH/NF after Stability		
Fig. S8	XPS of S-CoFeLDH/NF after stability		
Fig. S9	Free energy plot for CoFeLDH		
Table. S3	DFT formulae and data		
Fig. S10	Detailed UOR Mechanism		
Fig. S11	TDOS plot for S-CoFeLDH and CoFeLDH		
Fig. S12	Differential charge density plot		

Figure S1 a) Wide scan survey spectrum of S-CoFeLDH/NF b) High resolution XPS of O 1s in S-CoFeLDH/NF

Figure S2a-c) FESEM micrographs of CoFeLDH/NF at different resolution. d) Corresponding elemental mapping of Co, Fe and O. e) EDAX f) Quantitative Results of elements

Figure S3 a-c) FESEM micrographs of S-CoFeLDH at different resolutions. d) Corresponding elemental mapping of Co, Fe, S and O. e-f) EDAX and corresponding quantitative results of elements

Figure S4 CV voltammogram of a) S-CoFeLDH/NF and b) CoFeLDH/NF

Table S1: Comparison of S-CoFeLDH with recently reported LDH based electrocatalyst for OER application

Material	Overpotential (mV) @ 10 mA/cm ²	Tafel slope (mV dec ¹)	Stability (h)	year	Reference
S-CoFeLDH	268@40mA/cm ²	91	100	2023	This Work
Co-NC@Ni ₂ Fe- LDH	233	49.1	25	2022	1
NiFe-LDH/Ni ₃ S ₈	233	38.1	60	2022	2
H-CoS.@NiFe LDH	250	49	50	2021	3
NiFe LDH@NiCoP	220	48.6	100	2018	4
NiFe LDH@ITO	240	45	240	2021	5
NiFe LDH	217	45.1	20	2022	6
CoO–Co ₄ N@NiFe- LDH	231	39	24	2021	7
ReS ₂ /NiFe-LDH	266	43	30	2021	8
LDH-Bir	258	431	100	2021	9
NiFeV-LDH	280	53.7	32	2021	10
Pt/NiFe LDHs	190	53.5	45	2021	п
NiFe-CuCoLDH	212	48.31	100	2022	12
NiFe LDH	229	57	100	2020	13
Co9S8@NiFe LDH	220	52	20	2021	14
NiFe-60/Co ₃ O ₄	190	34.6	24	2021	15
NiFe LDH@NiFe	201	48.5	25	2021	16
NiO@NiFe-LDH	265	72	1	2018	17
Zn _{1.2} Fe ₂ -LDH	221	53	30	2018	18
PM-LDH	230	47	50	2019	19
NiFeCo-LDH/CF	249	42	20	2020	20
Ni-Fe LDH@NiCu	218	56.9	6	2018	21
(Co,Ni)Se ₂ @NiFe LDH	277	74.8	6	2019	22
CoGa LDH/SSM	258	34.1	70	2018	23
Co@N-CS/N-	248	68	30	2019	24
3D NiFe LDH- POM	200	67	20	2020	25
NiCoFe-NC	250	31	24	2018	26
Co-LDH@Ti ₃ C ₂ T	330	82	20	2019	27
NiFeCo LDH	210	39	50	2019	28
NiCo LDH	290	31	30	2018	29
NiCoFe-LDH	277	68.83	50	2022	30

Figure S5 Apparent TOF of S-CoFeLDH/NF, CoFeLDH/NF and $RuO_{\scriptscriptstyle 2}$

Table S2: Comparison of UOR activity of S-CoFeLDH with recently reported catalysts.

Material	Potential (V) @10 mA/cm ²	Tafel slope (mV dec ³)	Stability (h)	year	Reference
S-CoFeLDH	1.401 @ 40 mA/cm ²	39	100	2023	This work
NiOOH/(LDH/a- FeOOH)	1.35	34	200	2022	31
Rh/NiV-LDH	1.33	36	3000 Lsv cycles	2022	32
CoO–Co.N@NiFe- LDH	1.393	43	32	2021	33
PBA/FeCoNi-LDH	1.383	45.76	20	2021	34
MoS ₄ -LDH	1.37	29	30	2019	35
NiFe-LDH/MWCNTs	1.335	75	20	2020	36
Ni9Fe1-LDH	1.41	39.8	2	2022	37
CoFe0.75Mn0.25-LDH	1.367	79.4	30	2022	38
NiTe@CoFe LDH	1.56	-	50	2022	39
NiCo-ZLDH	1.335	51.83	20	2022	40
NiAl-LDHs	1.42	59.8	14	2022	41

Figure S6 Electrochemical measurements for UOR a) CV at different scan rates, b) Cdl plot and c) EIS nyquist plot of S-CoFeLDH in 1 M KOH with 0.5 M Urea

Figure S7 a-c) FESEM micrographs of S-CoFeLDH/NF after electrochemical stability. d) elemental mapping corresponding to Co, Fe, S and O.

Figure S8 XPS analysis after electrochemical stability. High resolution XPS of a) Co2p b) Fe2p c) O1s and d) S2p $\,$

S1. DFT Calculation

The adsorption energies of oxygen-containing intermediates over assumed electrochemical active sites were calculated by the following equations: -

$$\Delta E_{o^*} = E_{o^*} - E_* - [E_{H20} - E_{H2}]$$
$$\Delta E_{OH^*} = E_{OH^*} - E_* - [E_{H20} - 1/2E_{H2}]$$
$$\Delta E_{OOH^*} = E_{OOH^*} - E_* - [2 E_{H20} - 3/2 E_{H2}]$$

Where, E^* , E^*_{oh} , E^*_{ooh} and E^*_{o} are the total energies of the catalytic substrate without and with the adsorption of the intermediates of OOH, OH and O respectively. E_{h20} and E_{h2} are the energy of water and hydrogen molecules in gas phase respectively. In alkaline medium the overall OER could be expressed as:

$$4OH^2 \rightarrow O_2 + 2H_2O + 4e$$

The elementary reaction steps would be:

- $OH^{1} + * \rightarrow OH^{1} + e^{-1}$
- $OH^{*} + OH^{*} \rightarrow O^{*} + H_{2}O(1) + e^{*}$
- $OH^2 + O^2 \rightarrow OOH^2 + e^2$
- $OH^{*} + OOH^{*} \rightarrow O_{2}(g) + H_{2}O(l) + e^{-1}$

Table S3: Gibbs free energy of structural intermediates after calculation at 0 V and 1.23 V.

Structure	$\Delta G \text{ at } 0 V$	ΔG at 1.23V
CoFeLDH-OH*	2.65187	1.45187
CoFeLDH-O*	4.84458	2.41458
CoFeLDH-OOH*	8.24452	4.58452
$CoFeLDH + O_2$	4.92	0.03
S-CoFeLDH-OH*	2.91247	1.68247
S-CoFeLDH-O*	3.88538	1.42538
S-CoFeLDH-OOH*	6.44542	2.75542
S-CoFeLDH + O_2	4.92	0
S-CoFeLDH-OH*	0.92751	-0.78591
S-CoFeLDH-O*	2.58372	-0.48631
S-CoFeLDH-OOH*	4.59381	0.53371
S-CoFeLDH + O_2	4.92	0

Where, * stands for an adsorption site on catalysts. The change in free energy ΔG for each reaction step is given by the equation: - $\Delta G = \Delta E + \Delta ZPE - T \Delta S + \Delta G_{a}$

Here, the overpotential can be calculate to evaluate the performance for OER by [1].

 $\eta = \max (\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4)/e-1.23$

Figure S10: Detailed UOR mechanism.

Figure S11: TDOS plot for S-CoFeLDH (bottom) and CoFeLDH (top)

Figure S12: Differential charge density curve a) CoFe-LDH and b) S-CoFeLDH.

References:

1. Guo, T.; Chen, L.; Li, Y.; Shen, K., Controllable Synthesis of Ultrathin Defect-Rich LDH Nanoarrays Coupled with MOF- Derived Co- NC Microarrays for Efficient Overall Water Splitting. *Small* **2022**, *18* (29), 2107739.

2. Yao, Y.; Hu, E.; Zheng, H.; Chen, Y.; Wang, Z.; Cui, Y.; Qian, G., Scalable Synthesis of NiFe- LDH/Ni9S8/NF Nanosheets by Two- Step Corrosion for Efficient Oxygen Electrocatalysis. *ChemCatChem* **2022**, *14* (1), e202101280.

3. Liu, H.; Guan, J.; Yang, S.; Yu, Y.; Shao, R.; Zhang, Z.; Dou, M.; Wang, F.; Xu, Q., Metal–Organic- Framework- Derived Co2P Nanoparticle/Multi- Doped Porous Carbon as a Trifunctional Electrocatalyst. *Advanced Materials* **2020**, *32* (36), 2003649.

4. Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B., Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. *Advanced Functional Materials* **2018**, *28* (14), 1706847.

Xu, J.; Li, Z.; Chen, D.; Yang, S.; Zheng, K.; Ruan, J.; Wu, Y.; Zhang, H.; Chen,
 J.; Xie, F.; Jin, Y.; Wang, N.; Meng, H., Porous Indium Tin Oxide-Supported NiFe LDH as

a Highly Active Electrocatalyst in the Oxygen Evolution Reaction and Flexible Zinc–Air Batteries. *ACS Applied Materials & Interfaces* **2021**, *13* (41), 48774-48783.

6. Zheng, Z.; Wu, D.; Chen, G.; Zhang, N.; Wan, H.; Liu, X.; Ma, R., Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. *Carbon Energy* **2022**, *4* (5), 901-913.

 Chen, B.; Humayun, M.; Li, Y.; Zhang, H.; Sun, H.; Wu, Y.; Wang, C., Constructing Hierarchical Fluffy CoO–Co4N@NiFe-LDH Nanorod Arrays for Highly Effective Overall Water Splitting and Urea Electrolysis. *ACS Sustainable Chemistry & Engineering* 2021, 9 (42), 14180-14192.

8. Han, X.; Li, N.; Kang, Y. B.; Dou, Q.; Xiong, P.; Liu, Q.; Lee, J. Y.; Dai, L.; Park, H. S., Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. *ACS Energy Letters* **2021**, *6* (7), 2460-2468.

Chen, Z.; Ju, M.; Sun, M.; Jin, L.; Cai, R.; Wang, Z.; Dong, L.; Peng, L.; Long, X.; Huang, B., TM LDH Meets Birnessite: A 2D- 2D Hybrid Catalyst with Long- Term Stability for Water Oxidation at Industrial Operating Conditions. *Angewandte Chemie International Edition* 2021, *60* (17), 9699-9705.

10. Zhou, L.; Zhang, C.; Zhang, Y.; Li, Z.; Shao, M., Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. *Advanced Functional Materials* **2021**, *31* (15), 2009743.

11. Yu, X.; Guo, J.; Li, B.; Xu, J.; Gao, P.; Hui, K. S.; Hui, K. N.; Shao, H., Sub-Nanometer Pt Clusters on Defective NiFe LDH Nanosheets as Trifunctional Electrocatalysts for Water Splitting and Rechargeable Hybrid Sodium–Air Batteries. *ACS Applied Materials* & *Interfaces* **2021**, *13* (23), 26891-26903. 12. Yu, L.; Xiao, J.; Huang, C.; Zhou, J.; Qiu, M.; Yu, Y.; Ren, Z.; Chu, C.-W.; Yu, J. C., High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. *Proceedings of the National Academy of Sciences* **2022**, *119* (18), e2202382119.

13. Ahn, I.-K.; Lee, S.-Y.; Kim, H. G.; Lee, G.-B.; Lee, J.-H.; Kim, M.; Joo, Y.-C., Electrochemical oxidation of boron-doped nickel–iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts. *RSC advances* **2021**, *11* (14), 8198-8206.

Feng, X.; Jiao, Q.; Dai, Z.; Dang, Y.; Suib, S. L.; Zhang, J.; Zhao, Y.; Li, H.;
Feng, C.; Li, A., Revealing the effect of interfacial electron transfer in heterostructured Co 9
S 8@ NiFe LDH for enhanced electrocatalytic oxygen evolution. *Journal of Materials Chemistry A* 2021, 9 (20), 12244-12254.

Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang, X.; Wang,
 G., Constructing a Hetero-interface Composed of Oxygen Vacancy-Enriched Co3O4 and
 Crystalline–Amorphous NiFe-LDH for Oxygen Evolution Reaction. *ACS Catalysis* 2021, *11* (23), 14338-14351.

16. Wang, P.; Lin, Y.; Xu, Q.; Xu, Z.; Wan, L.; Xia, Y.; Wang, B., Acid-Corrosion-Induced Hollow-Structured NiFe-Layered Double Hydroxide Electrocatalysts for Efficient Water Oxidation. *ACS Applied Energy Materials* **2021**, *4* (9), 9022-9031.

Sirisomboonchai, S.; Li, S.; Yoshida, A.; Li, X.; Samart, C.; Abudula, A.; Guan,
G., Fabrication of NiO Microflake@NiFe-LDH Nanosheet Heterostructure Electrocatalysts
for Oxygen Evolution Reaction. *ACS Sustainable Chemistry & Engineering* 2019, 7 (2),
2327-2334.

18. Rajeshkhanna, G.; Kandula, S.; Shrestha, K. R.; Kim, N. H.; Lee, J. H., A New Class of Zn1- xFex–Oxyselenide and Zn1- xFex–LDH Nanostructured Material with

Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities for Overall Water Splitting. *Small* **2018**, *14* (51), 1803638.

19. Zhang, X.; Zhao, Y.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Zhang, T., A simple synthetic strategy toward defect- rich porous monolayer NiFe- layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. *Advanced Energy Materials* **2019**, *9* (24), 1900881.

20. Lin, Y.; Wang, H.; Peng, C. K.; Bu, L.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J.; Lin, Y. G.; Lee, J. M., Co- induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. *Small* **2020**, *16* (38), 2002426.

21. Zhou, Y.; Wang, Z.; Pan, Z.; Liu, L.; Xi, J.; Luo, X.; Shen, Y., Exceptional performance of hierarchical Ni–Fe (hydr) oxide@ NiCu electrocatalysts for water splitting. *Advanced Materials* **2019**, *31* (8), 1806769.

22. Li, J.-G.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C., Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se2@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. *ACS Applied Materials & Interfaces* **2019**, *11* (8), 8106-8114.

23. Zhang, J.; Dong, C.; Wang, Z.; Gao, H.; Niu, J.; Peng, Z.; Zhang, Z., A New Defect- Rich CoGa Layered Double Hydroxide as Efficient and Stable Oxygen Evolution Electrocatalyst. *Small Methods* **2019**, *3* (2), 1800286.

24. Chen, Z.; Ha, Y.; Jia, H.; Yan, X.; Chen, M.; Liu, M.; Wu, R., Oriented transformation of Co- LDH into 2D/3D ZIF- 67 to achieve Co–N–C hybrids for efficient overall water splitting. *Advanced Energy Materials* **2019**, *9* (19), 1803918.

25. Li, C.; Zhang, Z.; Liu, R., In situ growth of 3D NiFe LDH- POM micro- flowers on nickel foam for overall water splitting. *Small* **2020**, *16* (46), 2003777.

26. Liu, W. J.; Hu, X.; Li, H. C.; Yu, H. Q., Pseudocapacitive Ni- Co- Fe Hydroxides/N- Doped Carbon Nanoplates- Based Electrocatalyst for Efficient Oxygen Evolution. *Small* **2018**, *14* (34), 1801878.

27. Benchakar, M.; Bilyk, T.; Garnero, C.; Loupias, L.; Morais, C.; Pacaud, J.; Canaff, C.; Chartier, P.; Morisset, S.; Guignard, N., MXene supported cobalt layered double hydroxide nanocrystals: facile synthesis route for a synergistic oxygen evolution reaction electrocatalyst. *Advanced Materials Interfaces* **2019**, *6* (23), 1901328.

Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J.
H., Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. *ACS Sustainable Chemistry & Engineering* 2019, 7 (11), 10035-10043.

Waghmode, B. J.; Gaikwad, A. P.; Rode, C. V.; Sathaye, S. D.; Patil, K. R.;
Malkhede, D. D., Calixarene Intercalated NiCo Layered Double Hydroxide for Enhanced
Oxygen Evolution Catalysis. *ACS Sustainable Chemistry & Engineering* 2018, 6 (8), 9649-9660.

30. Karuppasamy, K.; Bose, R.; Velusamy, D. B.; Vikraman, D.; Santhoshkumar, P.; Sivakumar, P.; Alfantazi, A.; Kim, H.-S., Rational Design and Engineering of Metal– Organic Framework-Derived Trimetallic NiCoFe-Layered Double Hydroxides as Efficient Electrocatalysts for Water Oxidation Reaction. *ACS Sustainable Chemistry & Engineering* **2022**, *10* (45), 14693-14704.

31. Cai, M.; Zhu, Q.; Wang, X.; Shao, Z.; Yao, L.; Zeng, H.; Wu, X.; Chen, J.;
Huang, K.; Feng, S., Formation and Stabilization of NiOOH by Introducing α- FeOOH in
LDH: Composite Electrocatalyst for Oxygen Evolution and Urea Oxidation Reactions.
Advanced Materials 2022, 2209338.

32. Sun, H.; Li, L.; Chen, H.-C.; Duan, D.; Humayun, M.; Qiu, Y.; Zhang, X.; Ao, X.; Wu, Y.; Pang, Y., Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. *Science Bulletin* 2022, 67 (17), 1763-1775.
33. .

34. Zhang, J.; Jin, L.; Gu, P.; Hu, L.; Chen, D.; He, J.; Xu, Q.; Lu, J., Prussian Blue Analogue/FeCoNi-Layered Double Hydroxide Nanorod Arrays on Nickel Foam for Urea Electrolysis. *ACS Applied Nano Materials* **2021**, *4* (11), 12407-12414.

35. Nadeema, A.; Kashyap, V.; Gururaj, R.; Kurungot, S., [MoS4]2–-Intercalated NiCo-Layered Double Hydroxide Nanospikes: An Efficiently Synergized Material for Urine To Direct H2 Generation. *ACS Applied Materials & Interfaces* **2019**, *11* (29), 25917-25927.

36. Wen, X., NiFe-LDH/MWCNTs/NF nanohybrids as a high-performance bifunctional electrocatalyst for overall urea electrolysis. *International Journal of Hydrogen Energy* **2020**, *45* (29), 14660-14668.

37. Li, X.; Cui, X.; Jiang, L., Low-temperature and anhydrous preparation of NixFey-LDHs as an efficient electrocatalyst for water and urea electrolysis. *Catalysis Communications* **2022**, *162*, 106390.

38. Zheng, Y.; Sun, K.; Pang, J.; Hou, J.; Wang, G.; Guo, W.; Wang, L.; Guo, X.; Chen, L., Ternary cobalt–iron–manganese layered double hydroxides with 1D/2D hierarchical nanostructure for oxygen evolution reaction and urea oxidation reaction. *Journal of Alloys and Compounds* **2022**, *925*, 166754.

39. Yao, L.; Li, R.; Zhang, H.; Humayun, M.; Xu, X.; Fu, Y.; Nikiforov, A.; Wang, C., Interface engineering of NiTe@ CoFe LDH for highly efficient overall water-splitting. *International Journal of Hydrogen Energy* 2022, 47 (76), 32394-32404.

40. Tian, J.; Cao, C.; He, Y.; Khan, M. I.; Wu, X.-T.; Zhu, Q.-L., Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis. *Green Energy & Environment* **2022**.

41. Wang, Y.; Liu, Y.; Zhang, M.; Liu, B.; Zhao, Z.; Yan, K., One-step architecture of bifunctional petal-like oxygen-deficient NiAl– LDHs nanosheets for high-performance hybrid supercapacitors and urea oxidation. *Science China Materials* **2022**, 1-9.