Supplementary Information

Liquid Phase Epitaxy of CuGaO₂ on GaN: P-N Heterostructure for Photocatalytic Water Splitting

Hadi Sena¹,²*, Sho Kitano³, Hiroki Habazaki³, Masayoshi Fuji¹,²

¹ Advanced Ceramic Research Center, Nagoya Institute of Technology, Tajimi 507-0033, Japan
² Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0071, Japan
³ Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, 060-8628 Japan

Corresponding Author

*sena.hadi@nitech.ac.jp
Contents

Figure S1. A schematic illustration of the photocatalytic experiment setup.

Figure S2. Atomic force microscopy image of the CuGaO₂ film on GaN substrate in the scan area of 2 μm x 2 μm.

Figure S3. XRD profile of the CuGaO₂ film on GaN substrate. The intensity is in the log scale.

Figure S4. XRD profile of the powder synthesized inside the crucible.

Figure S5. SEM micrographs of the powder synthesized inside the crucible.

Figure S6. XRD profile of the CuGaO₂ film on GaN substrate after photocatalytic test for confirming the stability of the photocatalyst.

Figure S7. SEM micrograph of Pt cocatalyst nanoparticles on the surface of CuGaO₂ film on GaN substrate.

Figure S8. XRD profile of the hydrothermally synthesized CuGaO₂.

Figure S9. Photocatalytic hydrogen generation of the hydrothermally synthesized CuGaO₂.

Experimental procedure of CuGaO₂ synthesized by a hydrothermal method.
Figure S1. A schematic illustration of the photocatalytic experiment setup.
Figure S2. Atomic force microscopy image of the CuGaO$_2$ film on GaN substrate in the scan area of 2 µm x 2 µm.
Figure S3. XRD profile of the CuGaO$_2$ film on GaN substrate. The intensity is in the log scale.
Figure S4. XRD profile of the powder synthesized inside the crucible. Star markers are related to Ga_2O_3 impurities.
Figure S5. SEM micrographs of the powder synthesized inside the crucible. (upper): low-magnification, (lower): high-magnification.
Figure S6. XRD profile of the CuGaO$_2$ film on GaN substrate after photocatalytic test for confirming the stability of the photocatalyst. (Upper): Normalized Intensity, (Lower): log scale.
Figure S7. SEM micrograph of Pt cocatalyst nanoparticles on the surface of CuGaO$_2$ film on GaN substrate. Some representative Pt particles are shown with yellow circles.
Figure S8. XRD profile of the hydrothermally synthesized CuGaO$_2$.
Figure S9. Photocatalytic hydrogen generation of the hydrothermally synthesized CuGaO$_2$.

![Graph showing photocatalytic hydrogen generation](image)
Experimental procedure of CuGaO$_2$ synthesized by a hydrothermal method.

The CuGaO$_2$ was synthesized by the classical alcohol reduction method at low temperature. 5 mmol of Ga(NO$_3$)$_3$.xH$_2$O and 5 mmol of Cu(NO$_3$)$_2$.3H$_2$O were dissolved in 40 mL deionized water. Then, 1 M KOH water solution was slowly added to the mixture and the pH was adjusted to 7.5. After that, the hydrothermal precursor was transferred to a 150 mL container and reacted at 230°C for 3 h. After discarding the supernatant, the collected precipitates were washed with diluted ammonia (5 wt%), nitric acid solution (5 wt%) and deionized water 5 times. Finally, pure CuGaO$_2$ was obtained by washing the product with ethanol 3 times.