Improved Coulombic efficiency of single-flow, multiphase

flow batteries via use of strong-binding complexing agents

Prakash Rewatkar^{a,d#}, Mohamed Asarthen^{b#}, Robert Glouckhovski^a, Ran Elazari^c and

Matthew E. Suss^[a,b,d]

^aFaculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa,

3200003, Israel

^bThe Wolfson Department of Chemical Engineering, Technion-Israel Institute of

Technology, Haifa, 3200003, Israel

^cIsrael Chemicals Limited (ICL), Israel

^dThe Nancy & Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 320003, Israel

#These authors contributed equally to this work

Fig. S1 Measured aqueous and polybromide phases viscosities with shear rate with change in bromine concentration between 0.25 M to 2 M with 2 M $ZnBr_2$ and 0.5M MEP (Fig (a)) and 3-MBPy (Fig (b)) at 25° C.

Fig. S2 Newtonian behaviour of polybromide phase with different initial bromine concentration between 0.25 M to 2 M with 2 M $ZnBr_2$ and 0.5M MEP (Fig (a)) and 3-MBPy (Fig (b)) at 25° C.

Table I The benchmark	for selecting appropriate	BCAs and their optimal performance	

Battery	Electrode	Electrolyte and		Coulombic	Ref.
configuration	material	BCA		efficiency (CE)	
Membrane	Anode→	2.5 M of zinc	1M[C2MPyrr]Br	91.1%	1
	Graphite	bromide, zinc chloride and	1M [C2MPip]Br	80.3%	
	Cathode→	potassium	1M [C2Py]Br	91.1%	
	carbon	chloride	1M [C2OHPy]Br	83.4%	
			1M [C2MIm]Br	90.6%	
			1M[C2OHMIm]Br	71.4%	•
Membrane	Carbon felt	2 M ZnBr2,	0.6 M MEP·Br	95.39%	2
Porous	Graphite	3M ZnBr2	1M MEM &	≈80%	3
separator	or felt	2M HC104	1M MEP		
Membraneless	Graphite	2 M ZnBr2,	1 M MEP	73%	4
		0.5 M Br2			
Membraneless	Graphite	2 M ZnBr2,	0.5 M MEP	47%	Present
		0.5 M Br2	0.5 M 3-MBPy	69%	work

- 1. Schneider, Martin, et al. "The influence of novel bromine sequestration agents on zinc/bromine flow battery performance." Rsc Advances 6.112 (2016): 110548-110556.
- 2. Kim, Miae, Deokhee Yun, and Joonhyeon Jeon. "Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in Zinc–Bromide flow battery." Journal of Power Sources 438 (2019): 227020.
- 3. Adith, Ramakrishnan Velmurugan, et al. "An optimistic approach on flow rate and supporting electrolyte for enhancing the performance characteristics of Zn-Br2 redox flow battery." Electrochimica Acta 388 (2021): 138451.
- 4. Amit, Lihi, et al. "A Single-Flow Battery with Multiphase Flow." ChemSusChem 14.4 (2021): 1068-1073.