Supporting Information

Carbons derived from resole-type phenolic resins for use in Lithium-Sulfur batteries: Templating the resins with Sulfur leads to substantially enhanced cell performance

Luke D. J. Barter^a, Irshad Mohhammad^a, Steven J. Hinder^b, John F. Watts^b, Robert C. T. Slade^a and Carol Crean^{a*}

^a Chemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guilford GU2 7XH, United Kingdom

^b School of Mechanical Engineering, University of Surrey, Guilford GU2 7XH, United Kingdom

* <u>c.crean@surrey.ac.uk</u>

Fig. S1 XRD profiles for (a) the resole resins and (b) the various derived carbons.

Fig. S2 The non-localised density functional theory pore modelled data of carbons with slit-shaped pores. The pore size distributions (a) and cumulative pore volume plots (b) were based on the sorption data presented in Fig. 2.

Fig. S3 Scanning electron micrographs of carbon/sulfur composites made with S"-600, by either deposit (a) or melt-loading (b) with elemental sulfur, or Reg-600, by either deposition-loading (c) or melt-loading (d) with elemental sulfur.

Fig. S4 The XPS spectra of the carbons and carbon/sulfur composites of "S"-600

Fig. S5 The UATR-FTIR spectra of the unpyrolysed resoles (a) and XRD profiles for the various derived carbons (b).

Fig. S6 The Raman spectra of the resole-derived carbons.

Fig. S7 Discharge and charge profiles at ten cycle intervals for cells made with deposition-loaded "S"-600 (a) and Mic-600 (b). The test involved 40 cycles at 0.05 C.

Table S1 Component values for the model equivalent circuits used in fitting the impedance data for cells with deposition-loaded "S"-600 and Mic-600. Cells were rested at OCV for > 2h both before and after 40 cycles at 0.05 C.

	"S"-600	"S"-600	Mic-600	Mic-600
	before cycling	after cycling	before cycling	after cycling
R _s (Ohm)	1.5	2.0	3.0	6.5
R _{Cpbc} (Ohm)	4.5	-	5.0	-
CPE_{Cpbc} (F s ^[α-1])	6.0 x 10 ⁻⁸	-	4.0 x 10 ⁻⁷	-
	[α = 0.85]		[α = 0.80]	
R _{SEI} (Ohm)	-	11.0	-	6.5
CPE_{SEI} (F s ^[α-1])	-	5.0 x 10 ⁻⁹	-	1.8 x 10 ⁻⁷
		[α = 0.60]		[α = 0.75]
R _{cT} (Ohm)	34.0	4.0	169.0	15.0
CPE_{CT} (F s ^[α-1])	8.0 x 10 ⁻⁷	1.0 x 10 ⁻⁵	5.0 x 10 ⁻⁷	4.5 x 10⁻ ⁶
	[α = 0.82]	[α = 0.80]	[α = 0.82]	[α = 0.80]
R _{Film} (Ohm)	4.0			2.0
CPE_{Film} (F s ^[α-1])	2.0x10 ⁻⁴			6.0 x 10 ⁻⁴
	[α = 0.60]			[α = 0.80]
R _{Polysulfide solid/liquid} (Ohm)				3.0
$CPE_{Polysulfide solid/liquid}$ (F s ^[α-1])				3.0 x 10 ⁻³
				[α = 0.50]
W _s (Ohm s ^{-0.5})	2.6	1.0	5.8	0.9

Rs			
R	CPE	Cpbc	
R	CPE	SEI	
R	CPE	СТ	
R	CPE	Film	
Ws			
CPE _{low}			

Series resistance Carbon host positive bulk contribution Solid-electrolyte interface Charge transfer Li₂S/Li₂S₂ film formation Warburg element Low frequency CPE

frequency