Supplementary Information

Aqueous polysulfide redox flow battery with semi-fluorinated cation exchange membrane

Sooraj Sreenath ^{a,b} , Nayanthara P. S ^a, Chetan M. Pawar ^{a,b}, Anish Ash ^c, Bhavana Bhatt ^a,

Vivek Verma ^{c,d}, Rajaram K. Nagarale ^{a,b,*}

^a.Electro Membrane Processes Laboratory, Membrane Science and Separation Technology

Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002,

India

^b. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

^{c.}Department of Materials Science and Engineering, Indian Institute of Technology-Kanpur, Kanpur-208016, India

^{d.}Centre for Environmental Sciences and Engineering, Indian Institute of Technology-Kanpur, Kanpur, India – 208016

Corresponding author e-mail: rknagarale@csmcri.res.in

Figure 1. (a) Schematic of the employed two-component cell and (b) Digital photograph of the two-component cell.

Figure S2. (a) Schematic of the polysulfide-ferricyanide redox flow battery and (b) Digital photograph of the assembled polysulfide-ferricyanide redox flow battery

Figure S3. Universal testing machine (UTM) analysis of Nafion-117.