Supplementary Information

Life Cycle Assessment of Low-Dimensional Materials for Perovskite Photovoltaic Cells

Achyuth Ravilla¹, Carlo A.R. Perini², Juan-Pablo Correa-Baena², Anita W.Y. Ho-Baillie³, Ilke Celik^{1*}

¹ Department of Civil and Environmental Engineering, Portland State University, Portland, 97201, OR, USA.

² School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA.

³ School of Physics and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.

*Corresponding author, Department of Mechanical and Material Engineering, Portland State University, Portland, 97201, OR, USA.

E-mail address: <u>ilke@pdx.edu</u> (Ilke Celik).

- The environmental impacts attributed to 1g of each LD material analyzed in this study across ten TRACI impact categories are presented in Table S.1.
- The environmental impacts of the incorporation of the various LD materials in different layers of PSC have been calculated, and a comparative analysis of the environmental impacts for each LD material within every layer has been presented in Table S.2- S.4.
- LD materials that show lower environmental impacts in each layer have been chosen for Alt-1 *ld*-PSC configuration (highlighted in green in Table S.2-S.4), while those with higher impacts among the analyzed LD materials have been selected for the Alt-2 *ld*-PSC (highlighted in red in Table S2-S4).
- The environmental impacts of PSCs for 1 m^2 are provided in Table S.5.
- The Energy Payback Time (EPBT) calculations were performed using Eq. S1 follows an approach similar to Celik et al¹.
- The improved photovoltaic parameters after the incorporation of LD materials into various layers of the PSC structure are provided in Table S.6.
- Table S.7 provides the environmental impacts comparison of organic HTL i.e., spiro-OMeTAD, and inorganic HTL i.e., CuSCN for 1m² of PSC.
- Table S.8 provides an environmental impact comparison between two Alt-1 configurations, one with spiro-OMeTAD as HTL and the other employing CuSCN as HTL. In both of these Alt-1 configurations, the HTL integrates rGO, the ETL includes graphene, and the

absorber layer with BP-nano. Our results show that the environmental performance of the spiro-OMeTAD-based Alt-1 and CuSCN-based Alt-1 are similar.

TRACL immediates	rG	0	Graphene		GQDs		BP-nano		MoS ₂	
TRACI impact categories	Materials	Energy	Materials	Energy	Materials	Energy	Materials	Energy	Materials	Energy
Acidification (kg SO ₂ -eq)	3.28E-04	3.06E-06	1.91E-05	7.08E-04	4.05E-02	1.97E-01	2.18E-01	4.81E-02	1.47E-02	1.15E-05
Ecotoxicity (CTUe)	4.08E+00	8.71E-03	6.58E-02	2.01E+00	5.70E+01	8.22E+02	3.83E+02	2.00E+02	8.98E+01	4.80E-02
Eutrophication (kg N-eq)	1.98E-04	6.39E-06	1.13E-05	1.48E-03	8.21E-03	6.52E-01	2.02E-01	1.59E-01	1.04E-02	3.81E-05
GWP (kg CO ₂ -eq)	3.27E-02	1.10E-03	3.53E-03	2.55E-01	2.28E+00	8.65E+01	4.58E+01	2.11E+01	2.06E+00	5.05E-03
Particulate Air (kg PM _{2.5} - eq)	9.22E-05	2.69E-06	6.45E-06	6.23E-04	5.51E-03	2.94E-01	1.01E-01	7.17E-02	2.67E-03	1.72E-05
Human toxicity, cancer (CTUh)	3.40E-09	7.80E-11	3.52E-10	1.80E-08	2.60E-07	7.52E-06	3.34E-06	1.83E-06	1.36E-07	4.40E-10
Human toxicity, non-canc. (CTUh)	2.94E-08	2.64E-10	1.36E-09	6.10E-08	1.00E-06	2.45E-05	1.15E-05	5.97E-06	6.32E-07	1.43E-09
Ozone Depletion Air (kg CFC 11-eq)	9.26E-09	6.66E-11	4.12E-10	1.54E-08	2.21E-07	4.97E-06	3.24E-06	1.21E-06	3.24E-07	2.90E-10
Resources, Fossil fuels (MJ surplus energy)	3.72E-02	1.07E-03	3.72E-03	2.48E-01	3.19E+00	8.06E+01	5.12E+01	1.97E+01	3.95E+00	4.71E-03
Smog Air (kg O ₃ -eq)	2.47E-03	3.08E-05	2.53E-04	7.11E-03	1.50E-01	2.81E+00	2.99E+00	6.87E-01	1.14E-01	1.64E-04

Table S.1. Environmental impacts attributed to materials and energy utilized in the synthesis of 1g of various LD materials across all TRACI impact categories.

Table S.2 Environmental impacts of graphene, BPQDs, and GQDs integrated into ETL per m^2 of *ld*-PSC. The LD material highlighted in green indicates lower environmental impact, while the LD material highlighted in red shows higher environmental impacts for ETL integration.

TRACI impact categories	Graphene	BPQDs	GQDs
Acidification (kg SO ₂ -eq)	9.66E-05	8.45E-04	1.24E-03
Ecotoxicity (CTUe)	1.73E-01	1.83E+00	4.59E+00
Eutrophication (kg N-eq)	9.76E-05	1.12E-03	3.45E-03
GWP (kg CO ₂ -eq)	2.07E-02	2.09E-01	4.63E-01
Particulate Air (kg PM _{2.5} - eq)	2.48E-05	5.24E-04	1.56E-03
Human toxicity, cancer (CTUh)	1.59E-09	1.62E-08	4.06E-08
Human toxicity, non-canc. (CTUh)	4.98E-09	5.46E-08	1.33E-07
Ozone Depletion Air (kg CFC 11-eq)	6.99E-10	1.35E-08	2.71E-08
Resources, Fossil fuels (MJ surplus energy)	4.95E-02	2.39E-01	4.37E-01
Smog air (kg O ₃ -eq)	1.19E-03	1.16E-02	1.55E-02
CED (MJ)	6.00E-01	4.66E+00	9.99E+00

Table S.3 Environmental impacts of GQDs, BP-nano, and rGO integrated into absorber layer per m^2 of *ld*-PSC. The LD material highlighted in green indicates a lower environmental impact, while the LD material highlighted in red shows higher environmental impacts for absorber layer integration.

TRACI impact categories	GQDs	BP-nano	rGO
Acidification (kg SO ₂ -eq)	1.22E-02	1.60E-03	2.43E-01
Ecotoxicity (CTUe)	4.25E+01	2.34E+00	2.27E+02
Eutrophication (kg N-eq)	3.17E-02	1.39E-03	1.22E-01
GWP (kg CO ₂ -eq)	4.27E+00	2.46E-01	1.93E+01
Particulate Air (kg PM _{2.5} - eq)	1.42E-02	5.21E-04	1.96E-02
Human toxicity, cancer (CTUh)	3.72E-07	1.81E-08	1.24E-06
Human toxicity, non-canc. (CTUh)	1.22E-06	6.15E-08	4.35E-06
Ozone Depletion Air (kg CFC 11-eq)	2.62E-07	2.53E-08	3.71E-06
Resources, Fossil fuels (MJ surplus energy)	4.22E+00	3.96E-01	5.68E+01
Smog air (kg O ₃ -eq)	1.45E-01	1.33E-02	9.96E-01
CED (MJ)	9.27E+01	5.86E+00	5.55E+02

Table S.4 Environmental impacts of rGO, MoS_2 , and BP-nano integrated into HTL per m² of *ld*-PSC. The LD material highlighted in green indicates a lower environmental impact, while the LD material highlighted in red shows higher environmental impacts for HTL integration.

TRACI impact categories	rGO	MoS ₂	BP-nano
Acidification (kg SO ₂ -eq)	1.34E-04	9.40E-03	1.61E-02
Ecotoxicity (CTUe)	5.92E-01	4.06E+01	3.54E+01
Eutrophication (kg N-eq)	4.24E-04	7.11E-03	2.18E-02
GWP (kg CO ₂ -eq)	5.46E-02	1.80E+00	4.04E+00
Particulate Air (kg PM _{2.5} - eq)	1.78E-04	1.66E-03	1.04E-02
Human toxicity, cancer (CTUh)	4.74E-09	9.87E-08	3.12E-07
Human toxicity, non-canc. (CTUh)	1.53E-08	4.72E-07	1.06E-06
Ozone Depletion Air (kg CFC 11-eq)	3.80E-09	1.44E-07	2.68E-07
Resources, Fossil fuels (MJ surplus energy)	5.84E-02	5.27E+00	4.35E+00
Smog air (kg O3-eq)	1.91E-03	9.97E-02	2.22E-01
CED (MJ)	1.22E+00	4.95E+01	8.86E+01

TRACI impact categories	PSC	Alt-1	Alt-2
Acidification (kg SO ₂ -eq)	3.45E-01	3.47E-01	6.06E-01
Ecotoxicity (CTUe)	5.83E+03	5.83E+03	6.09E+03
Eutrophication (kg N-eq)	2.46E-01	2.48E-01	3.93E-01
GWP (kg CO ₂ -eq)	3.64E+01	3.67E+01	6.02E+01
Particulate Air (kg PM _{2.5} - eq)	8.14E-02	8.19E-02	1.13E-01
Human toxicity, cancer (CTUh)	7.63E-06	7.65E-06	9.22E-06
Human toxicity, non-canc. (CTUh)	6.18E-05	6.19E-05	6.73E-05
Ozone Depletion Air (kg CFC 11-eq)	3.73E-06	3.76E-06	7.74E-06
Resources, Fossil fuels (MJ surplus energy)	4.94E+01	4.98E+01	1.11E+02
Smog air (kg O3-eq)	3.97E+00	3.99E+00	5.21E+00
CED (MJ)	6.72E+02	6.80E+02	1.33E+03

Table S.5 Environmental impacts of PSCs for 1m² of module across all TRACI impact categories.

Table S.6 Photovoltaic parameters of PSC structure after incorporation of various LD materials into ETL, the absorber layer, and HTL.

PSC layer	LD material integration	Jsc (mA/cm ²)	V _{oc} (V)	FF (%)	η (%)	Reference
ETL	Graphene	23.21	1.08	69.0	17.4	2
	GQDs	22.97	1.13	75.4	19.7	3
	BPQDs	24.4	1.13	76.1	21.0	4
Absorber layer	BP-nano	22.95	1.06	80.0	19.7	5
	rGO	17.67	0.93	70.0	11.6	6
	GQDs	22.91	1.05	76.3	18.4	7
HTL	BP-nano	20.22	1.06	76.1	16.4	8
	MoS ₂	21.70	1.12	72.0	17.5	9
	rGO	23.05	1.11	71.0	18.2	10

Conversion of Impacts_{kWh} to Impacts_{m2}

$$Impacts_{kWh} = \frac{Impacts_{m^2}}{I * PCE * PR * Lt} Eq. S1$$

where $impacts_{m2}$ represents the environmental impacts of 1m2 of module area manufacturing; $impacts_{kWh}$ is the impacts per kWh electricity generation from PV module; I denote the solar insolation constant (1700 kWh/m²/year); PR is the performance ratio of the module (75%); Lt is the lifetime of the PV modules (years).

Energy Payback Time (EPBT)

$$EPBT = \frac{CED \times \varepsilon}{I \times \eta \times PR \times CF} \quad Eq. S2$$

where CED represents the cumulative energy demand (MJ/m²), ε is the electrical to primary energy conversion factor (35%), PR is the performance ratio (75%), η is the PCE (%) of PV technology, *I* denote the global irradiation constant (1700 kWh/ m²/ year), and CF is the conversion factor (3.6MJ/kWh).

Low-cost inorganic HTL (CuSCN)

Table S.7 Environmental impacts comparison of organic HTL i.e., spiro-OMeTAD, and inorganic HTL i.e., CuSCN for 1m² of PSC. Note: The thickness of CuSCN is 40nm and spiro-OMeTAD is 150nm.

TRACI impact categories	CuSCN	spiro-OMeTAD
Acidification (kg SO ₂ -eq)	1.58E-04	9.33E-07
Ecotoxicity (CTUe)	2.46E-01	1.74E-03
Eutrophication (kg N-eq)	2.82E-04	5.43E-07
GWP (kg CO ₂ -eq)	2.73E-02	2.32E-04
Particulate Air (kg PM _{2.5} - eq)	1.77E-05	2.15E-07
Human toxicity, cancer (CTUh)	2.08E-09	1.19E-11
Human toxicity, non-canc. (CTUh)	8.33E-09	3.76E-11
Ozone Depletion Air (kg CFC 11-eq)	4.08E-09	2.32E-11
Resources, Fossil fuels (MJ surplus energy)	3.19E-02	8.80E-04
Smog air (kg O3-eq)	1.20E-03	1.24E-05
CED (MJ)	6.01E-01	7.44E-03

Table S.8 Environmental impacts comparison between two Alt-1 *ld*-PSC configurations, one incorporates organic HTL spiro-OMeTAD and the other using inorganic HTL CuSCN for 1kWh electricity production. In two Alt-1 configurations, ETL is integrated with graphene and absorber layer with BP-nano. We substituted spiro-OMeTAD with inorganic CuSCN for the HTL and following a previous study¹¹ that incorporated rGO on CuSCN, we calculated the environmental impacts.

TRACI impact categories	Alt-1 with spiro-OMeTAD+rGO	Alt-1 with CuSCN+rGO
Acidification (kg SO ₂ -eq)	4.30E-05	4.31E-05
Ecotoxicity (CTUe)	7.23E-01	7.23E-01
Eutrophication (kg N-eq)	3.07E-05	3.08E-05
GWP (kg CO ₂ -eq)	4.55E-03	4.56E-03
Particulate Air (kg PM _{2.5} - eq)	1.02E-05	1.02E-05
Human toxicity, cancer (CTUh)	9.49E-10	9.50E-10
Human toxicity, non-canc. (CTUh)	7.67E-09	7.67E-09
Ozone Depletion Air (kg CFC 11-eq)	4.66E-10	4.67E-10
Resources, Fossil fuels (MJ surplus energy)	6.18E-03	6.20E-03
Smog air (kg O3-eq)	4.94E-04	4.95E-04
CED (MJ)	8.43E-02	8.44E-02

Environmental impact comparison between regular and inverted PSCs after the incorporation of LD materials

• Table S.9 provides the environmental impact comparison between Alt-1 *ld*-PSC and an inverted *ld*-PSC configuration. The inverted *ld*-PSC includes BPQDs additional coating on the top of PEDOT: PSS. Following previous study¹², we assumed a 15% increase in the PCE value for the inverted *ld*-PSC after the integration of BPQDs.

Table S.9 Environmental impacts comparison between Alt-1 *ld*-PSC configuration and inverted *ld*-PSC with PEDOT: PSS as HTL and PCBM as ETL. In inverted PSC, BPQDs were applied on the PEDOT: PSS to enhance the hole extraction in p-i-n PSC structure.

TRACI impact categories	Alt-1 PSC	Inverted PSC PEDOT: PSS +BPQDs
Acidification (kg SO ₂ -eq)	4.30E-05	4.44E-05
Ecotoxicity (CTUe)	7.23E-01	7.26E-01
Eutrophication (kg N-eq)	3.07E-05	3.29E-05
GWP (kg CO ₂ -eq)	4.55E-03	4.98E-03
Particulate Air (kg PM _{2.5} - eq)	1.02E-05	1.05E-05
Human toxicity, cancer (CTUh)	9.49E-10	9.70E-10
Human toxicity, non-canc. (CTUh)	7.67E-09	7.71E-09
Ozone Depletion Air (kg CFC 11-eq)	4.66E-10	5.33E-10
Resources, Fossil fuels (MJ surplus energy)	6.18E-03	7.50E-03
Smog air (kg O3-eq)	4.94E-04	5.12E-04
CED (MJ)	8.43E-02	8.72E-02

References:

- 1 I. Celik, A. B. Phillips, Z. Song, Y. Yan, R. J. Ellingson, M. J. Heben and D. Apul, Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration, *Energy Environ. Sci.*, 2017, **10**, 1874–1884.
- 2 M. Zhu, W. Liu, W. Ke, L. Xie, P. Dong and F. Hao, Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis, *ACS Appl. Mater. Interfaces*, 2019, **11**, 666–673.
- J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao, Y. Qiang, X. Zhu, L. Xu, P. Wang, C. Cui and D. Yang, Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells, *ACS Nano*, 2017, **11**, 9176–9182.
- 4 B. Gu, Y. Du, B. Chen, R. Zhao, H. Lu, Q. Xu and C. Guo, Black Phosphorus Quantum Dot-Engineered Tin Oxide Electron Transport Layer for Highly Stable Perovskite Solar Cells with Negligible Hysteresis, *ACS Appl. Mater. Interfaces*, 2022, **14**, 11264–11272.
- 5 Y. Wang, H. Zhang, T. Zhang, W. Shi, M. Kan, J. Chen and Y. Zhao, Photostability of MAPbI 3

Perovskite Solar Cells by Incorporating Black Phosphorus, *Sol. RRL*, , DOI:10.1002/solr.201900197.

- 6 A. K. Kadhim, M. R. Mohammad and A. I. Abd Ali, Enhancing the efficiency of perovskite solar cells by modifying perovskite layer with rGO additive, *Chem. Phys. Lett.*, 2022, **786**, 2–6.
- 7 X. Fang, J. Ding, N. Yuan, P. Sun, M. Lv, G. Ding and C. Zhu, Graphene quantum dot incorporated perovskite films: Passivating grain boundaries and facilitating electron extraction, *Phys. Chem. Chem. Phys.*, 2017, **19**, 6057–6063.
- 8 S. K. Muduli, E. Varrla, S. A. Kulkarni, G. Han, K. Thirumal, O. Lev, S. Mhaisalkar and N. Mathews, 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells, *J. Power Sources*, 2017, **371**, 156–161.
- 9 A. Agresti, S. Pescetelli, A. L. Palma, B. Martín-García, L. Najafi, S. Bellani, I. Moreels, M. Prato, F. Bonaccorso and A. Di Carlo, Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules, ACS Energy Lett., 2019, 4, 1862–1871.
- 10 S. Suragtkhuu, O. Tserendavag, U. Vandandoo, A. S. R. Bati, M. Bat-Erdene, J. G. Shapter, M. Batmunkh and S. Davaasambuu, Efficiency and stability enhancement of perovskite solar cells using reduced graphene oxide derived from earth-abundant natural graphite, *RSC Adv.*, 2020, **10**, 9133–9139.
- 11 T. H. Chowdhury, M. Akhtaruzzaman, M. E. Kayesh, R. Kaneko, T. Noda, J. J. Lee and A. Islam, Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability, *Sol. Energy*, 2018, **171**, 652–657.
- 12 W. Chen, K. Li, Y. Wang, X. Feng, Z. Liao, Q. Su, X. Lin and Z. He, Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells, *J. Phys. Chem. Lett.*, 2017, 8, 591–598.