Electronic Supplementary Material (ESI) for Energy Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information (ESI)

A Co and Fe bimetallic MOF with enhanced electrocatalytic oxygen evolution performance: exploring the electronic environment modifications upon Fe incorporation †

Varsha Singh,^a Devesh Kumar Singh,^b Mamta Yadav,^a Smita Singh,^a Vikram Rathour,^a

Ananya Tiwari,^a and Vellaichamy Ganesan*,^a

a: Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, UP, India

b: Kutir Post Graduate College, Chakkey, Jaunpur-222146, UP, India

E-mail: velganesh@yahoo.com and velgan@bhu.ac.in

*Corresponding author

Calculation of turnover frequency (TOF)

The turnover frequency is calculated by measuring the cyclic voltammetry (CV) response in the non-catalytic redox region (in this case, 0.9 to 1.4 V (vs. RHE)). Half of the integrated area of the cyclic voltammogram is divided by the scan rate at which the CV is recorded (in this case, 0.02 V s⁻¹) to get the charge.

Charge (Coulombs) = Half of the integrated area of the cyclic voltammogram (V A) /scan rate (V s^{-1})

Number of electrons = Charge/ 1.602×10^{-19}

The obtained number of electrons was divided by electrons transferred in the redox reaction (in this case, 1 corresponding to Co^{2+} to Co^{3+}) to get the surface concentration (c)

 $TOF = (i \times N_A)/A \times F \times n \times c$

where, i = current in A

 $N_A = Avogadro number (6.023 \times 10^{23})$

A = Geometrical area of the electrode (here 0.196 cm^2)

F = Faraday constant (96485 C)

n = number of electrons

c = surface concentration

 Table S1: The obtained ratios of Co:Fe comprehended from ICP analysis.

Feed ratio of metal ions (Co:Fe)	Obtained ratio (Co:Fe)		
2:1	1.7:1		
1:1	1:1.1		
1:2	1:2.2		

Table S2: XPS peak positions of elements in Co-MOF, Fe-MOF, and 2:1 Co-Fe-MOF.

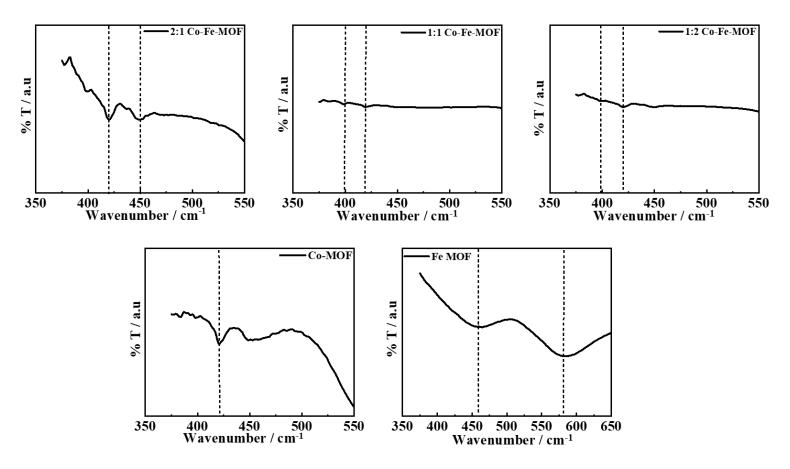
Materials	Co-MOF	Fe-MOF	2:1 Co-Fe-MOF		
	Binding energy / eV	Binding energy / eV	Binding energy / eV		
Elements					
C	284.6 (Adventitious-C)	284.6 (Adventitious-C)	284.6 (Adventitious-C)		
	285.1 (C-C)	285.0 (C-C)	285.2 (C-C)		
	285.6 (C-N)	285.6 (C-N)	286.1 (C-N) 286.8 (C=N-C) 286.9 (C-O)		
	286.2 (C=N-C)	286.2 (C=N-C)			
	286.9 (C-O)	287.0 (C-O)			
	288.8 (O-C=O)	288.6 (O-C=O)	288.5 (O-C=O)		
Co	783.1 (Co ²⁺)	-	780.7 (Co ³⁺)		
	788.4 (Sat.)		796.3 (Co ³⁺)		
	798.7 (Co ²⁺)		786.6 (Sat.)		
	804.8 (Sat.)		$782.4 (Co^{2+})$		
			797.7 (Co ²⁺)		
			803.3 (Sat.)		
Fe	-	713.7 (Fe ³⁺)	713.4 (Fe ³⁺)		
		719.2 (Sat.)	726.1 (Fe ³⁺)		
		727.1 (Fe ³⁺)	718.4 (Sat.)		
			$711.0 (\text{Fe}^{2+})$		
			724.1 (Fe ²⁺)		
N	399.5 (M-N)	399.4 (M-N)	399.4 (M-N)		
	400.4 (Pyridinic-N)	400.3 (Pyridinic-N)	400.3 (Pyridinic-N)		
	407.3 (Nitrate-N)	407.1 (Nitrate-N)	406.7 (Nitrate-N)		
0	531.1 (M-O)	530.2 (M-O)	530.0 (M-O)		
	532.9 (O-C=O)	531.4 (O-C=O)	531.5 (O-C=O)		
	533.0 (Adsorbed H ₂ O)	532.6 (Adsorbed H ₂ O)	532.6 (Adsorbed H ₂ O)		

Table S3: Mass activity values (Ag⁻¹cm⁻²) of MOFs at various potentials.

S. No.	MOFs	Mass activity values at different applied potentials (V, vs. RHE)			
		1.54	1.59	1.64	1.69
1.	2:1 Co-Fe-MOF	173.89	483.46	879.78	1260.29
2.	1:1 Co-Fe-MOF	76.47	257.47	483.46	815.44
3.	1:2 Co-Fe-MOF	61.03	207.78	379.78	627.57
4.	Co-MOF	16.91	27.94	113.97	258.08

Table S4: TOF values (s⁻¹) of MOFs at various overpotentials.

S. No.	MOFs	TOF values at different overpotentials		
		320 mV	370 mV	420 mV
1.	2:1 Co-Fe-MOF	8.48	26.83	48.36
2.	1:1 Co-Fe-MOF	6.05	19.05	41.16
3.	1:2 Co-Fe-MOF	4.36	17.37	40.95
4.	Co-MOF	0.53	4.26	20.27


Table S5: Evaluation of OER performances of various bimetallic MOFs with present work.

S. No.	MOFs	Substrate	Overpotenti al (η, mV) at 10 mA. cm ⁻²	Tafel slope (mV/ dec)	Referen ces
1.	Ni-BTC	Carbon paper	346	64	66
2.	Co-Fe-BDC	GCE	295	34.8	28
3.	Co-Fe-IDA	GCE	265	44	29
4.	Co _{0.6} Fe _{0.4} -MOF74 (DHTA)	GCE	280	56	67
5.	2:1 Co-Fe-MOF	GCE	310	45	This work
6.	Ni-Co-BTC	GCE	330	32	14
7.	FeNi@CNF	GCE	356	62.6	20
8.	Co-Fe-BDC	GCE	238	52	30
9.	$[Ni_{2}(BBTZ)(H_{2}O)_{4}]V_{4}O_{12}\cdot 2H_{2}O$	Carbon cloth	353	77.8	68
10.	Co _{0.75} Fe _{0.25} -Pyrazine	GCE	239	42	69

BTC: (1,3,5-benzene tricarboxylate), BDC: (1,4-benzene dicarboxylate), (3) IDA: (4,5 imidazole dicarboxylic acid), (4) DHTA: (2,5-dihydroxyterepthalic acid), (7) CNF: complex nanoflower (9) BBTZ: 1,4-bis-(1,2,4-triazol-1-ylmethyl)benzene

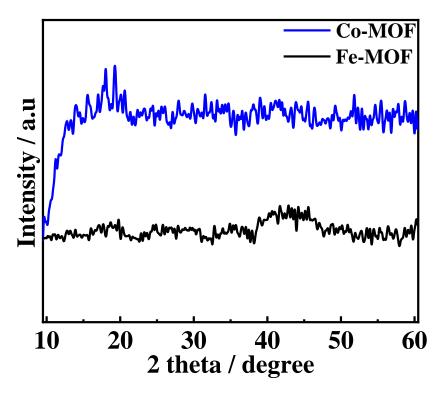


Figure S1: Digital photographs of MOFs showing the color variations.

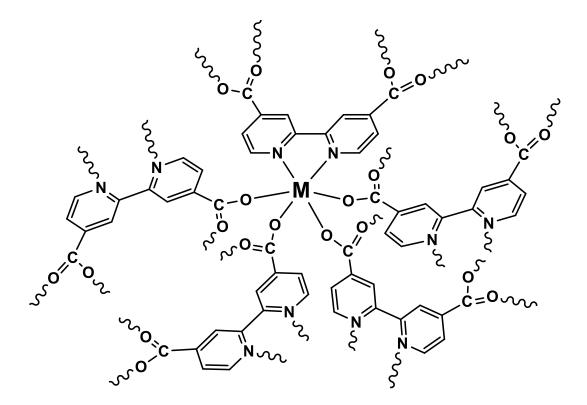


Figure S2: FT-IR spectra showing the presence of M-O and M-N bonds in the MOFs.

•

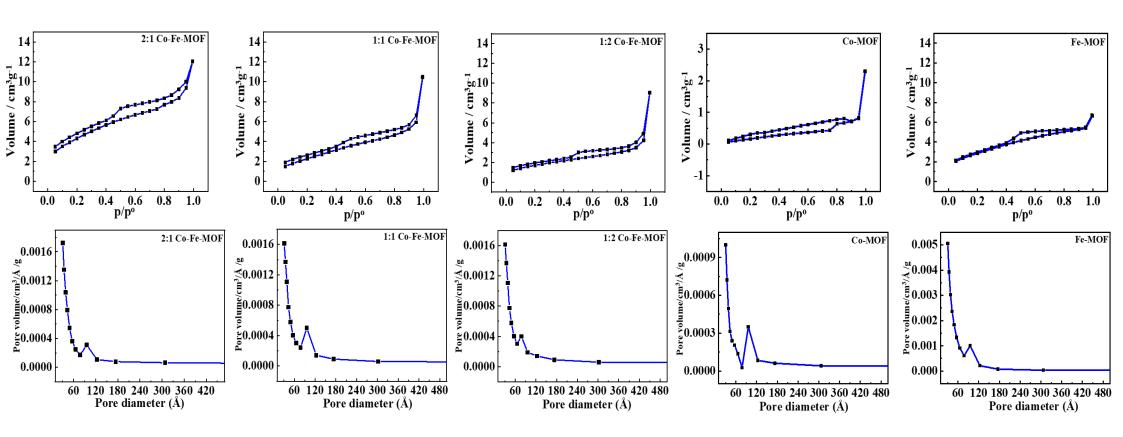
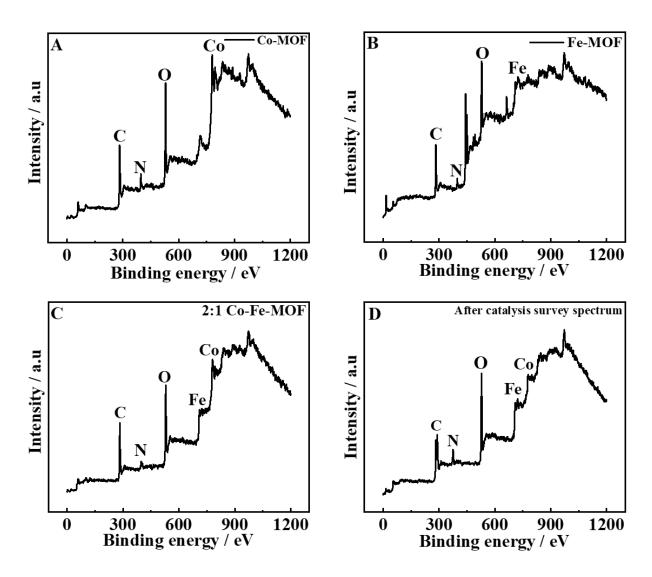


Figure S3: Powder XRD patterns of Co-MOF and Fe-MOF.



M = Co or Fe

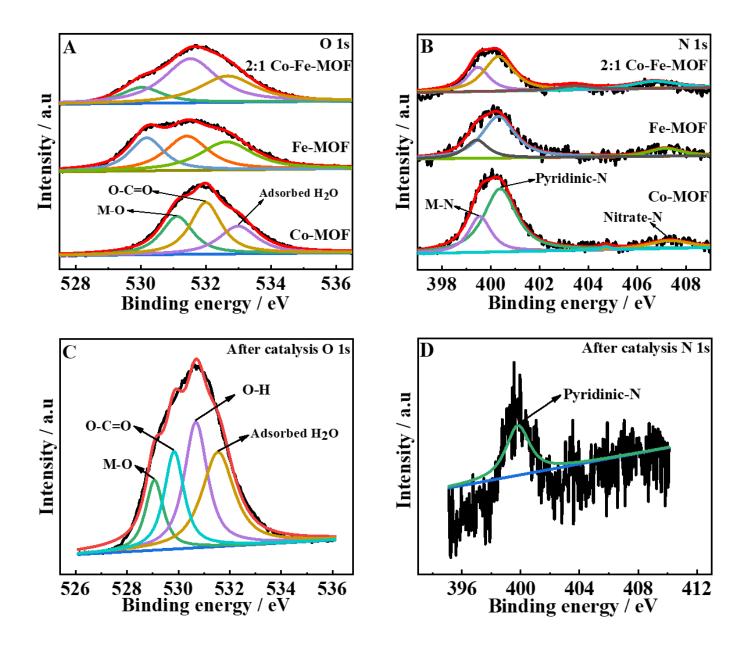

Figure S4: Possible structure of the MOF

Figure S5: BET surface area and pore size distribution curve of MOFs.

Figure S6: XPS survey spectra of Co-MOF (A), Fe-MOF (B), 2:1 Co-Fe-MOF (C), and after the OER catalysis 2:1 Co-Fe-MOF (D).

Figure S7: O 1s (A) and N 1s (B) XPS spectra of Co-MOF, Fe-MOF, 2:1 Co-Fe-MOF and after catalysis XPS spectra of O 1s (C) and N 1s (D) of 2:1 Co-Fe-MOF.

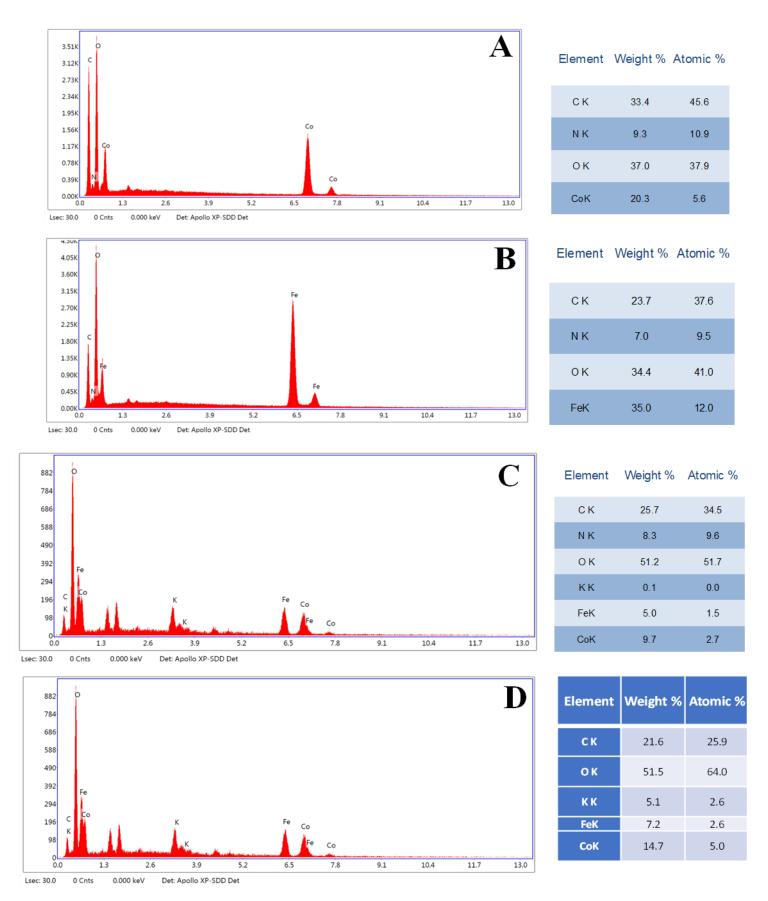
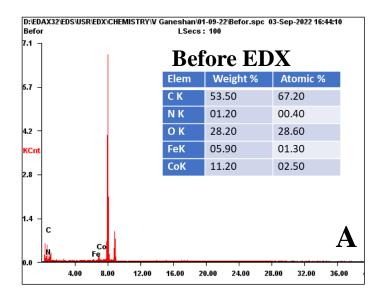
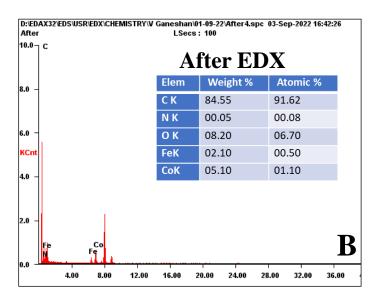




Fig. S8: EDX spectra and elemental composition analyses of (A) Co-MOF, (B) Fe-MOF, (C)

2:1 Co-Fe-MOF, and (D) post-catalysis 2:1 Co-Fe MOF

Figure S9: EDX spectra of 2:1 Co-Fe-MOF before (A) and after (B) OER catalysis.

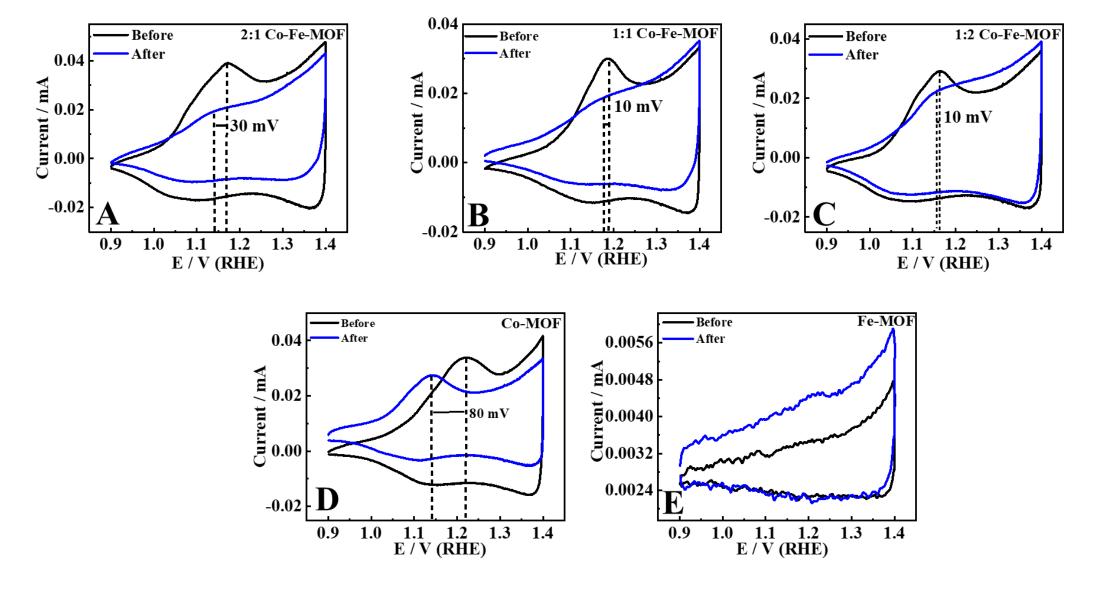


Figure S10: CV responses of MOFs before and after 30 consecutive CV cycles.

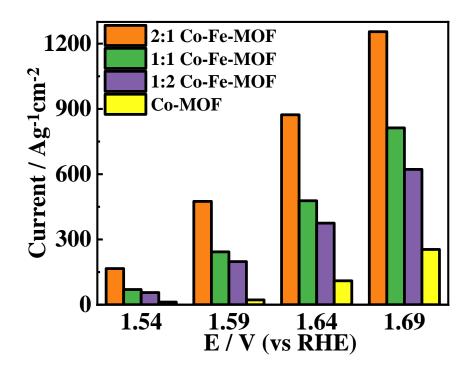
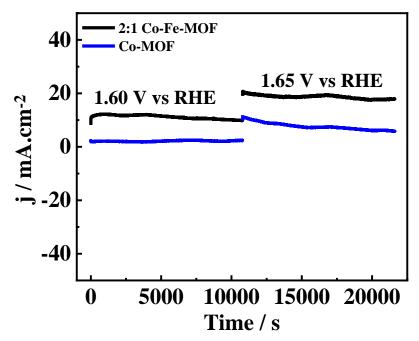



Figure S11: Mass activity plot of MOFs at different potentials.

Figure S12: Stability test responses by amperometry 2:1 Co-Fe-MOF and Co-MOF at 1.60 V and 1.65 V vs RHE for three hours each.

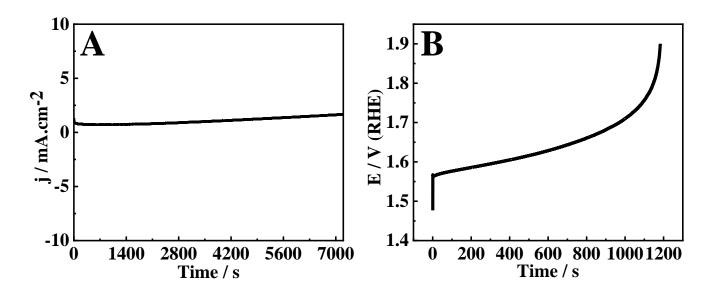


Figure S13: Stability test responses by amperometry (A) and chronopotentiometry (B) of $GC_{RDE}/RuO_2. \label{eq:GC_RDE}$

References

S1:S. Anantharaj, P. E. Karthik and S. Kundu, Petal-like hierarchical array of ultrathin Ni(OH)₂ nanosheets decorated with Ni(OH)₂ nanoburls: A highly efficient OER electrocatalyst, *Catal. Sci. Technol.*, 2017, **7**, 882–893.