Supporting Information

A self-powered electrochemical aptasensor for detection of 17β-estradiol based on carbon nanocages/gold nanoparticles and DNA bioconjugate mediated biofuel cells

Yongju Wu,‡ ^a Dan Luo,‡ ^a Jinfei Yi,^a Rong Li,^a Dan Yang,^a Pengfei Pang,^{*a} Hongbin Wang,^a Wenrong Yang^a and Yanli Zhang^{*a}

^a Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation
 Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming
 650504, P. R. China. E-mail: pfpang@aliyun.com, ylzhang@ymu.edu.cn
 ^b School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia

Supporting figure captions:

Fig. S1 SEM images of (A) PB and (B) PB@PDA.

Fig. S2 (A) SEM and (B) TEM images of prepared CNCs.

Fig. S3 XPS spectra of (A) C 1s and (B) Au 4f of CNCs/AuNPs nanocomposite.

Fig. S4 CV plots of CNCs/AuNPs/ITO biocathode in the absence (a) and presence (b) of 5 mM glucose in 100 mM PBS (pH 7.4).

Fig. S5 Feasibility of the proposed BFCs-based electrochemical aptasensor. *E*^{OCV} responses of BFCs-based electrochemical aptasensor in absence (a) and presence (b) of 0.1 ng/mL E2 in 100 mM PBS (pH 7.4).

Fig. S6 Optimization of experimental parameters. The effects of concentrations of (A) $Fe(CN)_6^{3-}$, (B) aptamer, (C) incubation time of PMNPs and aptamer, and (D) incubation time of E2 and PMNPs@aptamer on E^{OCV} response of BFCs-based electrochemical aptasensor. The assays were carried out in 100 mM PBS (pH 7.4) containing 1 ng/mL E2.

Fig. S7 Stability of BFCs-based self-powered electrochemical aptasensor.

Table S1

Comparison of the analytical performances of BFCs-based self-powered aptasensor with other sensors for E2 detection

Table S2

Determined results of E2 in milk and tap water samples using proposed method

Fig. S1 SEM images of (A) PB and (B) PB@PDA.

Fig. S2 (A) SEM and (B) TEM images of prepared CNCs.

Fig. S3 XPS spectra of (A) C 1s and (B) Au 4f of CNCs/AuNPs nanocomposite.

Fig. S4 CV plots of CNCs/AuNPs/ITO biocathode in the absence (a) and presence (b) of 5 mM glucose in 100 mM PBS (pH 7.4).

Fig. S5 Feasibility of the proposed BFCs-based electrochemical aptasensor. *E*^{OCV} responses of BFCs-based electrochemical aptasensor in absence (a) and presence (b) of 1 ng/mL E2 in 100 mM PBS (pH 7.4).

Fig. S6 Optimization of experimental parameters. The effects of concentrations of (A) $Fe(CN)_6^{3-}$, (B) aptamer, (C) incubation time of PMNPs and aptamer, and (D) incubation time of E2 and PMNPs@aptamer on E^{OCV} response of BFCs-based electrochemical aptasensor. The assays were carried out in 100 mM PBS (pH 7.4) containing 1 ng/mL E2.

Fig. S7 Stability of BFCs-based self-powered electrochemical aptasensor.

Table S1

Comparison of the analytical performances of BFCs-based self-powered aptasensor with other sensors for E2 detection

Strategy	Technique	Linear range (pg mL ⁻¹)	LOD (pg mL ⁻¹)	Ref.
AuNPs-aptamer	CL	$10^2 - 10^8$	100	1
AuNPs-Ab	CL	$3 - 10^{5}$	3	2
MIL-53-aptamer/RuSiO ₂ -cDNA	FL	$136 - 2.7 \times 10^{5}$	54.5	3
CQDs-aptamer/Fe ₃ O ₄ -cDNA	FL	$2.7 - 2.7 \times 10^{5}$	0.95	4
Ru(bpy) ₃ ²⁺ -aptamer/cDNA	ECL	$2.7 - 2.7 \times 10^3$	0.3	5
Ru(II) derivative-InVO ₄ / β -AgVO ₃	ECL	$0.27 - 2.7 { imes} 10^4$	0.07	6
ZnIn ₂ S ₄ @NH ₂ -MIL-125(Ti)/	DEC	$0.5 - 2 \times 10^4$	0.3	7
PDA NS/Mn:ZnCdS QDs-Ab	FLC			
CdS@C NRs/ALP-aptamer	PEC	$272 - 6.8 imes 10^4$	100	8
split aptamer-3D DNA walker	EC	$0.27 - 1.36 { imes} 10^5$	0.076	9
MWCNTs/thionine/AuNPs/SPWE	EC	$10 - 10^{5}$	10	10
SnS ₂ -aptamer	PFCs	$272 - 1.36 imes 10^4$	33	11
CNCs/AuNPs-DNA bioconjugate	BFCs	$0.5 - 1.5 imes 10^4$	0.16	This work

Table S2

Determined results of E2 in milk and tap water samples using proposed method

Samples	Spiked (ng mL ⁻¹)	Found (ng mL ⁻¹)	Recovery (%)	RSD (%)
Milk	0	_	_	_
	1.0	1.04	104.0	1.6
	5.0	5.04	100.8	4.2
	15.0	14.64	98.2	3.4
Tap water	0	_	_	_
	1.0	1.02	102.0	1.5
	5.0	4.82	96.4	4.1
	15.0	14.76	98.8	3.6

References

- 1 J. C. Liu, W. H. Bai, S. C. Niu, C. Zhu, S. M. Yang and A. L. Chen, Sci. Rep., 2014, 4, 7571.
- 2 A. Minopoli, N. Sakač, B. Lenyk, R. Campanile, D. Mayer, A. Offenhäusser, R. Velotta and B.
 D. Ventura, *Sensor. Actuat. B-Chem.*, 2020, **308**, 127699.
- 3 H. F. Sha and B. Yan, J. Colloid Interf. Sci., 2021, 583, 50-57.
- 4 Q. Y. Wei, P. Y. Zhang, H. B. Pu and D. W. Sun, Food Chem., 2022, 373, 131591.
- 5 J. J. Zhang, J. T. Cao, G. F. Shi, K. J. Huang, Y. M. Liu and Y. H. Chen, *Anal. Methods*, 2014, **6**, 6796–6801.
- 6 Q. Q. Zhao, J. W. Xue, X. Ren, D. W. Fan, X. Kuang, Y. Y. Li, Q. Wei and H. X. Ju, Sensor. Actuat. B-Chem., 2021, **348**, 130717.
- 7 T. Yan, T. T. Wu, S. Y. Wei, H. Q. Wang, M. Sun, L. G. Yan, Q. Wei and H. X. Ju, *Biosens. Bioelectron.*, 2020, **148**, 111739.
- 8 L. H. Tu, J. H. Zhu, A. Tanjung, M. Wang, J. W. Kang, A. J. Wang, L. P. Mei, Y. D. Xue and P. Song, *Microchim. Acta*, 2022, **189**, 56.
- 9 S. Qi, X. Z. Dong, Y. H. Sun, Y. Zhang, N. Duan and Z. P. Wang, *J. Hazard. Mater.*, 2022, **439**, 129590.
- 10 Y. Wang, J. P. Luo, J. T. Liu, X. R. Li, Z. Kong, H. Y. Jin and X. X. Cai, *Biosens. Bioelectron.*, 2018, **107**, 47–53.
- 11 X. L. Yao, J. Gao, K. Yan, Y. X. Chen and J. D. Zhang, Anal. Chem., 2020, 92, 8026–8030.