Supplementary Information

A Disposable Paper-based Electrochemical Biosensor Decorated by Electrospun

Cellulose Acetate Nanofibers for highly Sensitive Bio-detection

Zhiwei Zhang^{a, &}, Manman Du^{a,b, &}, Xiao Cheng^{a, &}, Xuecheng Dou^a, Junting Zhou^{a, c}, Jianguo Wu^{a, c},

Xinwu Xie^{a, d, *}, Mengfu Zhu^{a, d, *}

a, Systems Engineering Institute, People's Liberation Army, Tianjin 300161, China

b, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China

c, School of Electronic Information and Automation, Tianjin University of Science and Technology,

Tianjin 300222, China

d, National Bio-Protection Engineering Center, Tianjin 300161, China

& These authors contribute equally in this work.

* Corresponding author to Xinwu Xie (xinwuxie@163.com) and Mengfu Zhu (zmf323@163.com).

Tel:86-022-84660562

Fax: 86-022-84660562

Fig. S1 The details of electrospinning device and the sensor.

Fig. S2 DPV curves of electrospinning CA nanofibers with different excitation voltage (11, 16, and 21 kV); coating time duration=10 min.

Fig. S3 DPV curves of the CA nanofibers at different electrospinning duration. 5 (a), 10 (b), and 15 min (c) at voltage=16 kV.

Fig. S4 SEM images of the cross-section and the thickness of the CA nanofibers at different electrospinning duration. 5 (a), 10 (b), and 15 min (c) at voltage=16 kV.

Fig. S5 (a) DPV curves and (b) calibration curve of glucose detection by the bare PBSP electrodes.

Fig. S6 (a) CV curves of glucose detection by the bare PBSP electrodes; (b) CV curves and (c) calibration curve of glucose detection by CA NFs-decorated PBSP electrodes.

Fig. S7 Stability of CA NFs-decorated PBSP electrodes after modification of glucose oxidase

Fig. S8 (a) *I*-t curves and (b) calibration curve of Ag85B protein detection by bare PBSP electrodes.

Fig. S9 (a) I-t curves and (b) calibration curve of *E. Coli O157:H7* detection by the CA NFsdecorated PBSP electrodes without the E. coli O157:H7 monoclonal antibody.

Electrode	Paper Structure	Technique	Range & LOD	Reference	
CA/ZIF- 8@enzyme/MWCN Ts/AuNPs	No	-	1 – 10 μmol/mL LOD: 5.347 nmol/mL	Xin L., et al. ¹	
PVA-SbQ- MWCNTCOOHs	No	-	5 nmol/mL - 4 μmol/mL LOD: 2 nmol/mL	Eleni S., et al. ²	
Graphene/polyanili ne/AuNPs/glucose oxidase SPCE	Yes	DPV	0.2 - 11.2 μmol/mL LOD: 100 nmol/mL	Fen-Ying K., et al. ³	
PERs using a 3D printed BIA cell/SPEs	Yes	DPV	1 - 10 μmol/mL LOD: 110 nmol/mL	Anderson A D., et al. ⁴	
CA NFs/paper- based SPEs	Yes	CV/DPV	1 nmol/mL - 100 μmol/mL LOD: 0.71 nmol/mL	Present work	

 Table S1. Comparison of different electrochemical sensors for detecting glucose.

Electrode	Electrode Paper Structure		Range&LOD	Reference	
Ab-	Vac	600	10 - 100 ng/mL	Chauhan D.,	
250HD/SPE/FMTAD	res	SPR	LOD: 10 ng/mL	et al.⁵	
MWCNTs-doped	No		1 pg/mL - 1 ng/mL	Wang X., et	
Chitosan NFs	NO	-	LOD: 0.05 pg/mL	al. ⁶	
PMPC-S/AuNPs-	Vac	DPV	5 - 5000 ng/mL	Chanika P., et	
SPCE PADs	res		LOD: 1.6 ng/mL	al. ⁷	
SPEs/rGO-TEPA/Au					
and simple paper-	Vac	SWV	0.01 - 100.0 ng/mL	Liangli C., et	
based microfluidic	res		LOD: 0.005 ng/mL	al. ⁸	
devices					
CA NFs/paper-	Vac	Chronoampero	100 fg/mL - 10 μg/mL	Dracant work	
based SPEs	res	metry	etry LOD: 89.1 fg/mL		

Table S2. Comparison of	f different electrochemical	sensors for detecting protein.
-------------------------	-----------------------------	--------------------------------

Electrode	Paper Structure	Technique	Range&LOD	Reference	
Silica NPs on polyelectrolyte multilayer on Au electrode	No	CV	8 × 10 ⁴ - 8 × 10 ⁶ CFU/mL LOD: 2×10 ³ CFU/mL	Mathelie G., et al. ⁹	
Fluoride-doped tin oxide electrode	No	DPV	10 ³ - 10 ⁷ CFU/mL LOD: 10 ³ CFU/mL	Divagar M., et al. ¹⁰	
Carbon paste, a mixture of multi-walled carbon nanotube (MWCNT)	Yes	DPV	6.9 × 10 ² - 10 ⁶ CFU/mL LOD: 690 CFU/mL	Chanhwi P., et al. ¹¹	
CA NFs/paper- based SPEs	Yes	Chronoampero metry	1.5 × 10 ² - 1.5 × 10 ⁶ CFU/mL, LOD: 30 CFU/mL	Present work	

Table S3. C	omparison of	different	electrochemical	sensors for	detecting	bacteria.
-------------	--------------	-----------	-----------------	-------------	-----------	-----------

References

- [1] X. Li, Q. Feng, K. Lu, J. Huang, Y. Zhang, Y. Hou, H. Qiao, D. Li and Q. Wei, *Biosens. Bioelectron.*,
 2021, **171**, 112690.
- [2] E. Sapountzi, M. Braiek, C. Farre, M. Arab, J. F. Chateaux, N. Jaffrezic-Renault and F. Lagarde, J. *Electrochem. Soc.*, 2015, **162**, B275-B281.
- [3] F. Y. Kong, S. X. Gu, W. W. Li, T. T. Chen, Q. Xu and W. Wang, *Biosens. Bioelectron.*, 2014, **56**, 77-82.
- [4] A.A. Dias, T. M. G. Cardoso, R. M. Cardoso, L. C. Duarte, R. A. A. Munoz, E. M. Richter and W. K.
- T. Coltro, Sensor Actuat B-chem., 2016, **226**, 196-203.
- [5] D. Chauhan and P. R. Solanki, ACS Appl. Polym. Mater., 2019, 1, 1613-1623.
- [6] X. Wang, Y. Wang, M. Jiang, Y. Shan, X. Jin, M. Gong and X. Wang, *Anal. Biochem.*, 2018, 548, 15-22.
- [7] C. Pinyorospathum, S. Chaiyo, P. Sae-ung, V. P. Hoven, P. Damsongsang, W. Siangproh and O.Chailapakul, *Microchim. Acta.*, 2019, **186**, 472-482.
- [8] L. Cao, C. Fang, R. Zeng, X. Zhao, F. Zhao, Y. Jianga and Z. Chen, Sensor Actuat B-chem., 2017,
 252, 44-54.
- [9] M. Divagar, R. Sriramprabha, S. Sornambikai, N. Ponpandian and C. Viswanathan, J. *Electrochem. Soc.*, 2019, **166**, G1-G9.
- [10] M. G. Marion, C. B. Touria, G. Ibtissem, M. Axel, B. Laure, M. H. Delville and G. H. Christine, Sensor Actuat B-chem., 2019, **292**, 314-320.
- [11] C. Park, J. Lee, D. Lee and J. Jang, Sensor Actuat B-chem., 2022, 355, 131321.