SUPPLEMENTARY INFORMATION

Antimicrobial effects of silver nanoparticle-microspots on the mechanical properties of single bacteria

Giada Caniglia,*^a Dimitrios Valavanis, ^b Gözde Tezcan, ^b Joshua Magiera, ^b Holger Barth, ^c Joachim Bansmann, ^d Christine Kranz*^a, and Patrick R. Unwin, *^b

^a Institute of analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany ^b Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom

^c Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Albert-Einstein-Allee 11,89081 Ulm, Germany

^d Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany

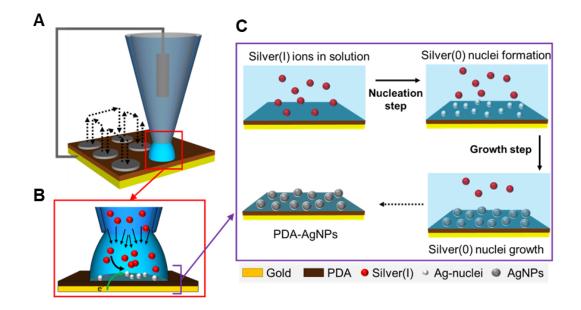
* Corresponding authors:

E-Mail address: giada.caniglia@uni-ulm.de; christine.kranz@uni-ulm.de

E-Mail: P.R.Unwin@warwick.ac.uk

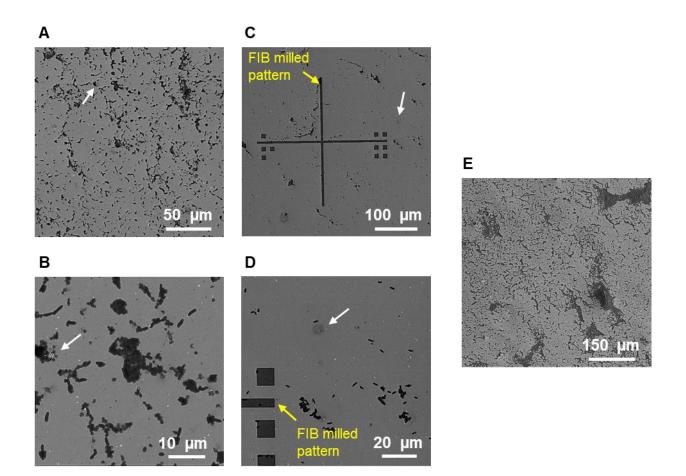
Content included in the Supporting Material:

S1. Schematics of the electrodeposition of AgNPs using scanning electrochemical cell microscopy (SECCM)

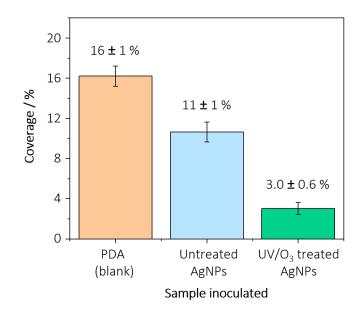

S2. Scanning electron microscopy (SEM) images of bacteria attached to different substrates

S3. Percent of coverage of E. coli at different substrates

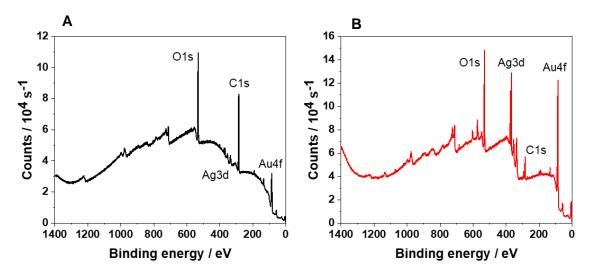
S4. X-ray photoelectron spectroscopy (XPS) spectra of untreated and UV/ozone-treated AgNPs-PDA samples


S5. Calculation of the concentration of silver at a AgNP-microspot

S1. Schematics of the electrodeposition of AgNPs using scanning electrochemical cell microscopy (SECCM)


Figure S1. (**A**) Schematic of the SECCM setup for AgNP electro-deposition on polydopamine (PDA) using a single-barrel pipette probe. The dotted arrows indicate the movement of the probe across the substrate (working electrode). (**B**) Detail of the confined electrochemical cell when the pipette approaches the surface and forms a contact meniscus. (**C**) Schematic of the electro-deposition steps of AgNPs.

S2. Scanning electron microscopy (SEM) images of bacteria attached to different substrates


Figure S2. SEM images of *E. coli* inoculated at AgNPs-PDA samples. (**A-B**) Untreated AgNPs-PDA sample (no UV-ozone treatment) with bacteria (dark features) attaching near and on top of AgNP-spots (white arrows). (**C-D**) AgNPs-PDA sample after a 30-minute UV-ozone treatment, showing a strongly reduced number of bacteria agglomerations at the surface. (**E**) Pure PDA sample with *E. coli* agglomerations.

S3. Percent of coverage of *E. coli* at different substrates

Figure S3. Bar chart showing the coverage of *E. coli* grown on pure PDA (pale orange), untreated AgNPs (blue), and UV/ozone-treated AgNPs. The coverage was evaluated by studying three different 100x100 μ m² SEM images from three different samples.

S4. X-ray photoelectron spectroscopy (XPS) spectra of untreated and UV/ozone-treated AgNPs-PDA samples

Figure S4. Survey XPS spectra recorded from the (**A**) untreated AgNPs-PDA substrate and (**B**) UV-ozone-treated AgNPs-PDA substrate.

S5. Calculation of the concentration of silver at a AgNPs microspot

The concentration of silver in a single AgNP-microspot was calculated according to the literature.^{1,2}

Assuming that the AgNPs have a spherical shape, the number of silver atoms per nanoparticle can be calculated considering that the volume ratio of silver atom to AgNP is 74.1%.

The volume of a single silver atom is 1.25×10^{-2} nm³ (considering a radius of 0.144 nm). The volume of a single NP is $(\pi/6)d^3$ where *d* is the diameter of the NP. According to the study of the particle size distribution performed by SEM, the AgNPs in the microspot have an averaged diameter equal to 13 ± 5 nm, thus the volume of a single NPs is approx. 1150 nm³.

The number of silver atoms in each AgNP is equal to:

$$\frac{N_{Ag}}{NP} = \frac{74.1}{100} \ge 1150 \ge \frac{1}{1.25 \times 10^{-2}} \approx 6.8 \ge 10^4 \text{ atoms } Ag \text{ per } AgNP_{d=13}$$

The average number of AgNPs at each microspot was evaluated *via* SEM studies, being approx. 3.6x10⁴ NPs per spot.

The number of silver atoms in each AgNP-microspot is then:

$$\frac{N_{Ag}}{spot} = \frac{NP}{spot} \ge \frac{Ag}{NP} = 3.6 \ge 10^4 \ge 6.8 \ge 10^4 \approx 2.5 \ge 10^9 \text{ atoms Ag per spot}$$

Finally, considering a volume of 500 μ L (the volume used for inoculating the samples with *E. coli*), the concentration of silver in the system is:

$$[Ag] = \frac{2.5 \times 10^9}{6.022 \times 10^{23} \times 5c10^{-4}} \approx 8 \times 10^{-8} \text{ mol } L^{-1}$$

where $6.022 \times 10^{23} \text{ mol}^{-1}$ is the Avogadro number.

References:

- 1. S. Xingcan, et al. Sci Chi B, 2003, 46, 387-398
- 2. J. Mariam, et al. J Fluoresc, 2011, 21, 2193-2199