Supplementary Information

Millimeter Water-in-Oil Droplet as an Alternative Back Exchange Prevention Strategy for Hydrogen/Deuterium Exchange Mass Spectrometry of Peptide/Protein

T.-Y Lui,^a Xiangfeng Chen,^{a,b,*} Simin Zhang,^a Danna Hu^a and T.-W. Dominic Chan^{a,*}

^aDepartment of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China

^bShandong Analysis and Test Centre, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, P. R. China

*Address reprint requests to Professor T.-W. D. Chan, Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR. E-mail: <u>twdchan@cuhk.edu.hk</u>, Dr. X. Chen, Shandong Academy of Sciences, Jinan, China. E-mail: <u>xiangfchensdas@163.com</u>.

Table of Content

Evaluation of the In-Source Artificial Back Exchange Using MaltoheptoseS4
Extraction of Deuterium Level Information from MS Spectra
Figure S1. Representative mass spectra showing the isotopic clusters of the 56-69 fragment ions (+3)
Numbers and Rate Constants of Fast, Intermediate, and Slow Exchanging Backbone Amide Hydrogens Involved in D-to-H Back Exchange ReactionSe
Table S1. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 30-55
Table S2. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 70-106Set
Table S3. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 110-134S7
Table S4. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 138-153
Reaction Mechanism of Acid-Catalyzed Back Exchange Reaction of Deuterated Backbone Amide
Figure S2. Reaction mechanism of acid-catalyzed back exchange reaction of deuterated backbone amide
Sequence Maps and Peaks Assignment Tables for Equine Myoglobin Using Different Enzymatic Digestion ApproachS10
Figure S3. The sequence map resulted from the pepsin digestion of myoglobin conducted in bulk solution for 2 mins under room conditionsS10
Table S5. Peak assignment table for the mass spectrum obtained from the bulk digestion ofMb under room conditions
Figure S4. The sequence map resulted from the pepsin digestion of myoglobin conducted in water-in-oil droplet for 2 mins under room conditions
Table S6. Peak assignment table for the mass spectrum obtained from the water-in-oil droplet digestion of Mb under room conditions
Figure S5. The sequence map resulted from the pepsin digestion of myoglobin conducted

in bulk solution for 2 mins	s in the presence of ice-wate	r bathS16
Table S7. Peak assignmen	nt table for the mass spectrum	n obtained from the bulk digestion of
Mb in the presence of ice-	-water bath	

Sequence Maps and Peaks Assignment Tables for Bovine Serum Albumin Using Different Enzymatic Digestion Approach
Figure S6. The sequence map resulted from the pepsin digestion of BSA conducted in bulk solution for 2 mins under room conditions
Table S8. Peak assignment table for the mass spectrum obtained from the bulk digestion ofBSA under room conditionsS20
Figure S7. The sequence map resulted from the pepsin digestion of BSA conducted in water-in-oil droplet for 2 mins under room conditions
Table S9. Peak assignment table for the mass spectrum obtained from the water-in-oil droplet digestion of BSA under room conditions
Evaluation on the Effect of Droplet Size on the Deuterium Uptake
Figure S8. Bar charts for the back exchange reaction of deuterated Mb digest fragments

erences

Evaluation of the In-Source Artificial Back Exchange Using Maltoheptose

The artificial back exchange extent in LMJ-SSP-MS is evaluated using carbohydrate containing only fast-exchanging hydroxyl group. Maltoheptose is reported to be a suitable internal standard for evaluating the artificial in-source back exchange occurred during ESI¹, and it is used for LMJ-SSP-MS. We didn't apply maltoheptose as an internal standard in our experiments, since we are monitoring the back exchange prior to LMJ-SSP-MS analysis and back exchange occur before and during LMJ-SSP-MS analysis cannot be distinguished. For instance, the experimental workflow used in the subsection "Decelerated Back Exchange in Water-in-oil Droplet" involves a 2-min enzymatic digestion of fully deuterated Mb in protiated pepsin solution with a protein-to-pepsin volume ratio of 1-to-9. Since the D/H volume ratio of the reaction mixture was 1-to-9, the deuterium labels on the fully deuterated maltoheptose would probably lose readily once spiked into the reaction mixture. Therefore, the evaluation of back exchange in the subsequent LMJ-SSP-MS analysis would not be possible.

To solve this problem, we used maltoheptose in a separate experiment which the undeuterated Mb in H₂O was digested with pepsin solution prepared in D₂O using a protein-to-pepsin volume ratio of 1-to-9. The final D/H volume ratio of the resultant mixture was thereby 9-to-1. Practically, 0.5 μ L of 1mM maltoheptose was spiked into 25 μ L of the Mb/pepsin mixture containing 90% (v/v) D₂O and experienced the 2-min digestion process with Mb. 25 μ L of ACN was then added to quench the digestion. Finally, 1 μ L of the solution was added into the cyclohexane reservoir preloaded in the cut Eppendorf, followed by an LMJ-SSP-MS analysis of the water-in-oil droplet. All the instrumental parameters used for the analysis, including the spraying solvent composition and the spraying solvent flow rate, were the same as described in the main manuscript.

The resultant deuterium uptake of maltoheptose obtained by the LMJ-SSP-MS analysis was quantified to be 20.52 Da (± 0.58) (Data not shown). Maltoheptose contains 23 fast-exchanging hydroxyl protons, the deuterium uptake of 20.52 Da signify an 89% deuteration. Since the hydroxyl would equilibrate to the percentage of deuterium in the surrounding solution, the maximum deuteration percentage of maltoheptose would be 90%. The 89% deuteration recorded by LMJ-SSP-MS almost reached 90%, indicating a negligible deuterium loss during the LMJ-SSP-MS analysis. Even the deuterium labels on fast-exchanging hydroxyl protons can be well-preserved, the back exchange of the backbone amide hydrogens which possess a much slower H/D exchange rate under acidic conditions could be deduced to be negligible for our LMJ-SSP-MS platform.

Extraction of Deuterium Level Information from MS Spectra

The procedures for extracting deuterium level information from MS spectra is illustrated using the peptide fragment 56-69. Figure S1A displayed the isotopic clusters of the 56-69 fragment ions (+3) obtained from (A) undeuterated Mb digest mixture drop-casted on Teflon surface; (B) deuterated Mb digest mixture drop-casted and completely dried on Teflon surface; and (D) deuterated Mb digest mixture stored in the form of water-in-oil droplet for 20 mins.

As computed using *HX Express*², the centroid masses of the isotopic clusters showed in Figure S1A, S1B, S1C and S1D are 1524.77 Da, 1531.34 Da, 1525.11 Da and 1528.14 Da respectively. Deducting the centroid mass of the undeuterated peptide (Figure S1A) from the deuterated peptide yielded the deuterium uptake value of 6.57 Da, 0.34 Da and 3.37 Da for Figure S1B, S1C and S1D respectively. The same deuterium level quantification procedures were applied to the MS raw data obtained from the three experimental runs, and the resultant average deuterium level were plotted in Figure 3 of the main manuscript.

Figure S1. Representative mass spectra showing the isotopic clusters of the 56-69 fragment ions (+3). Representative mass spectra showing the isotopic clusters of the 56-69 fragment ions (+3) obtained from (A) undeuterated Mb digest mixture drop-casted on Teflon surface; (B) deuterated Mb digest mixture drop-casted on Teflon surface; (C) deuterated Mb digest mixture drop-casted and completely dried on Teflon surface; and (D) deuterated Mb digest mixture stored in the form of water-in-oil droplet for 20 mins.

<u>Numbers and Rate Constants of Fast, Intermediate, and Slow Exchanging Backbone</u> <u>Amide Hydrogens Involved in D-to-H Back Exchange Reaction</u>

Fragmen	<u>t 30-55</u>	Bulk	Water-in-Oil Dronlet
Fast exchanging	Rate Constant (k ₁ , min ⁻¹)	0.346	0.091
	Number (N ₁)	4.516	5.542
Intermediate Exchanging	Rate Constant (k ₂ min ⁻¹)	0.236	0.091
00	Number (N ₂)	4.228	4.632
Slow Exchanging	Rate Constant (k ₃ , min ⁻¹)	0.022	0.000
	Number (N ₃)	5.878	4.556

Table S1. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 30-55. Numbers and rate constants of fast, intermediate and slow exchanging backbone amide hydrogens involved in the D-to-H back exchange reaction for fragment 30-55 are obtained using MS Excel Solver. The back exchange rate constants for all groups of backbone amide hydrogens are smaller in water-in-oil droplet than that in bulk solution, implying a decelerated back exchange reaction in water-in-oil droplet than bulk solution.

Fragment	70-106	Bulk	Water-in-Oil
			Droplet
Fast exchanging	Rate Constant	0.231	0.075
	(k_1, \min^{-1})		
	Number (N ₁)	11.273	12.888
Intermediate	Rate Constant	0.000	0.000
Exchanging	(k_{2}, min^{-1})		
	Number (N ₂)	8.449	5.750
Slow Exchanging	Rate Constant	0.000	0.000
	(k ₃ , min ⁻¹)		
	Number (N ₃)	0.411	1.541

Table S2. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 70-106. Numbers and rate constants of fast, intermediate and slow exchanging backbone amide hydrogens involved in the D-to-H back exchange reaction for fragment 70-106 are obtained using MS Excel Solver. The back exchange rate constants for fast exchanging backbone amide hydrogens are smaller in waterin-oil droplet than that in bulk solution, implying a decelerated back exchange reaction in water-in-oil droplet than bulk solution. Meanwhile, the rate constants for intermediate and slow exchanging backbone amide in both reaction environments approaches zero, implying these backbone amide hydrogens did not undergo back exchange reaction in the 10 mins experiment time course.

Fragment	110-134	Bulk	Water-in-Oil Droplet
Fast exchanging	Rate Constant	0.609	0.137
	(k_1, min^{-1})		
	Number (N ₁)	4.026	0.465
Intermediate	Rate Constant	0.047	0.131
Exchanging	(k_{2}, min^{-1})		
	Number (N ₂)	9.623	6.477
Slow Exchanging	Rate Constant	0.000	0.005
	(k ₃ , min ⁻¹)		
	Number (N ₃)	0.434	7.059

Table S3. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 110-134. Numbers and rate constants of fast, intermediate and slow exchanging backbone amide hydrogens involved in the D-to-H back exchange reaction for fragment 110-134 are obtained using MS Excel Solver. The back exchange rate constants for fast exchanging backbone amide hydrogens are smaller in waterin-oil droplet than that in bulk solution, implying a decelerated back exchange reaction in water-in-oil droplet than bulk solution. Meanwhile, the rate constants for both intermediate and slow exchanging backbone amide in water-in-oil droplet is larger than that in bulk solution. However, a greater number of backbone amide hydrogen is categorized as intermediate or slow exchanging group, as well as a smaller number of backbone amide hydrogens are categorized into the fast exchanging group in water-in-oil droplet than in bulk reaction. The overall apparent effect is still the deceleration of back exchange reaction in the water-in-oil droplet.

Fragment	138-153	Bulk	Water-in-Oil Droplet
Fast exchanging	Rate Constant (k ₁ , min ⁻¹)	0.397	0.138
	Number (N ₁)	2.313	4.722
Intermediate	Rate Constant	0.030	0.000
Exchanging	(k_{2}, min^{-1})		
	Number (N ₂)	8.619	5.581
Slow Exchanging	Rate Constant	0.000	0.000
	(k ₃ , min ⁻¹)		
	Number (N ₃)	0.407	1.056

Table S4. Numbers and Rate Constants of Backbone Amide Hydrogens Involved in Back Exchange Reaction for Fragment 138-153. Numbers and rate constants of fast, intermediate and slow exchanging backbone amide hydrogens involved in the D-to-H back exchange reaction for fragment 138-153 are obtained using MS Excel Solver. The back exchange rate constants for fast and intermediate exchanging backbone amide hydrogens are smaller in water-in-oil droplet than that in bulk solution, implying a decelerated back exchange reaction in water-in-oil droplet than bulk solution. Meanwhile, the rate constants for slow exchanging backbone amide in both reaction environments approaches zero, implying these backbone amide hydrogens did not undergo back exchange reaction in the 10 mins experiment time course.

<u>Reaction Mechanism of Acid-Catalyzed Back Exchange Reaction of Deuterated</u> <u>Backbone Amide</u>

Figure S2. Reaction mechanism of acid-catalyzed back exchange reaction of deuterated backbone amide. Reaction mechanism of acid-catalysed back exchange reaction of deuterated backbone amide, in which both the first step i.e., the O-protonation of amide by H_3O^+ , and the second step i.e., the deuteron removal by H_2O , are found to affect the back exchange rate.³

<u>Sequence Maps and Peaks Assignment Tables for Equine Myoglobin Using Different</u> <u>Enzymatic Digestion Approach</u>

The identification of the Mb digest fragment is performed using undeuterated Mb, and the detailed experimental procedures for the three digestion approaches could be found in the main manuscript. The sequence coverage of Mb resulted from all the three approaches reached 100%. The sequence maps in this section are created with the aid of the web-based application MSTools.⁴

G 1	L 2	S 3	D 4	G 5	E 6	W 7	Q 8	Q 9	V 10	L 11	N 12	V 13	W 14	G 15	K 16	V 17	E 18	A 19	D 20	I 21	A 22	G 23	H 24	G 25	Q 26	E 27	V 28	L 29	I 30
R 31	L 32	F 33	Т 34	G 35	Н 36	Р 37	E 38	Т 39	L 40	E 41	K 42	F 43	D 44	K 45	F 46	K 47	H 48	L 49	K 50	T 51	E 52	A 53	E 54	M 55	K 56	A 57	S 58	E 59	D 60
L 61	К 62	К 63	H 64	G 65	T 66	V 67	V 68	L 69	T 70	A 71	L 72	G 73	G 74	I 75	L 76	K 77	K 78	K 79	G 80	H 81	H 82	E 83	A 84	E 85	L 86	K 87	P 88	L 89	A 90
_																													
Q 91	S 92	Н 93	A 94	T 95	K 96	H 97	K 98	I 99	Р 100	I 101	К 102	ү 103	L 104	Е 105	F 106	I 107	S 108	D 109	A 110	I 111	I 112	H 113	V 114	L 115	H 116	S 117	K 118	Н 119	Р 120
																				I									
G 121	D 122	F 123	G 124	A 125	D 126	A 127	Q 128	G 129	A 130	M 131	T 132	K 133	A 134	L 135	E 136	L 137	F 138	R 139	N 140	D 141	I 142	А 143	A 144	K 145	ү 146	К 147	E 148	L 149	G 150
F	0 152	G 153	•																										

1. Bulk Digestion in Room Conditions

Pepsin: _____ 153 of 153 ~ 100% Total: 153 of 153 ~ 100%

Figure S3. The sequence map resulted from the pepsin digestion of myoglobin conducted in bulk solution for 2 mins under room conditions.

Experimental	Absolute	Relative	z	Peak	Theoretical	Error
m/z	Intensity	Intensity (%)		Assignment	m/z	(ppm)
	(a.u.)					
763.3256	1.16E+08	9.62	1+	1-7	763.3262	-0.85
1231.5926	7.87E+07	6.55	1+	1- 11	1231.5959	-2.73
673.3681	3.23E+07	2.69	1+	7-11	673.3673	1.08
487.2876	1.43E+08	11.87	1+	8-11	487.2880	-0.97
509.2538	3.83E+07	3.19	2+	12- 20	509.2542	-0.80
519.7647	6.45E+07	5.37	2+	20- 29	519.7649	-0.43
1038.5188			1+		1038.5220	-3.15
629.9357	4.08E+08	33.98	5+	30- 55	629.9364	-1.10
787.1673			4+		787.1686	-1.61
1049.2204			3+		1049.2222	-1.65
553.4818	3.53E+08	29.36	5+	33- 55	553.4826	-1.51
691.6004			4+		691.6013	-1.24
921.7973			3+		921.7991	-1.99
627.6564	6.92E+07	5.76	3+	41- 55	627.6579	-2.36
940.9840			2+		940.9829	1.14
595.6569	5.08E+07	4.23	3+	54- 69	595.6579	-1.63
892.9803			2+		892.9829	-2.91
552.6433	4.28E+07	3.56	3+	55- 69	552.6437	-0.73
381.9743	1.02E+09	84.49	4+	56-69	381.9746	-0.79
508.9631			3+		508.9635	-0.80
762.9403			2+		762.9414	-1.47
370.5609	4.10E+07	3.41	3+	60- 69	370.5613	-1.00
555.3377			2+		555.3380	-0.57
591.1995	9.15E+08	76.10	7+	70-106	591.2003	-1.30
689.5651			6+		689.5657	-0.95
827.2761			5+		827.2773	-1.49
1033.8424			4+		1033.8447	-2.19
1378.1173			3+		1378.1236	-4.59
535.6007	3.31E+08	27.56	7+	70-103	535.6010	-0.52
624.6993			6+		624.6999	-0.87
749.4374			5+	-	749.4383	-1.22
936.5439			4+		936.5459	-2.12
1248.3904			3+		1248.3919	-1.19
797.8620	1.23E+08	10.20	5+	70-105	797.8636	-2.05
997.0752			4+		997.0776	-2.40
665.0537			6+	-	665.0543	-0.99
588.0917	5.86E+07	4.87	4+	87-106	588.0921	-0.66
783.7855			3+	1	783.7868	-1.65
601.3475	8.21E+07	6.83	3+	96-110	601.3458	2.85
643.8325	7.04E+08	58.60	4+	110-134	643.8332	-1.10
858.1069			3+	1	858.1084	-1.69
1286.6548			2+	1	1286.6586	-2.95
374.2288	3.45E+08	28.70	1+	135-137	374.2291	-0.84

464.9968	1.07E+09	89.11	4+	138-153	464.9974	-1.25
619.6598			3+		619.6605	-1.14
928.9849			2+		928.9869	-2.08
442.2494	6.19E+07	5.15	3+	142-153	442.2474	4.61
662.8702			2+		662.8672	4.52

Table S5. Peak assignment table for the mass spectrum obtained from the bulk digestion of Mb under room conditions.

G 1	L 2	S 3	D 4	G 5	E 6	W 7	Q	Q	V 10	L 11	N 12	V 13	W 14	G 15	K 16	V 17	E 18	A 19	D 20	I 21	A 22	G 23	H 24	G 25	Q 26	E 27	V 28	L 29	I 30
R 31	L 32	F 33	Т 34	G 35	Н 36	Р 37	E 38	T 39	L 40	E 41	К 42	F 43	D 44	K 45	F 46	K 47	H 48	L 49	K 50	T 51	E 52	A 53	E 54	M 55	K 56	A 57	S 58	E 59	D 60
L 61	К 62	К 63	H 64	G 65	Т 66	V 67	V 68	L 69	Т 70	A 71	L 72	G 73	G 74	I 75	L 76	K 77	K 78	K 79	G 80	H 81	H 82	E 83	A 84	E 85	L 86	K 87	Р 88	L 89	A 90
Q 91	S 92	Н 93	A 94	Т 95	K 96	H 97	K 98	I 99	Р 100	I 101	К 102	ү 103	L 104	Е 105	F 106	I 107	S 108	D 109	A 110	I 111	I 112	H 113	V 114	L 115	H 116	S 117	K 118	H 119	P 126
																			1										
G 121	D 122	F 123	G 124	A 125	D 126	A 127	Q 128	G 129	A 130	M 131	T 132	K 133	A 134	L 135	E 136	L 137	F 138	R 139	N 140	D 141	I 142	A 143	A 144	K 145	ү 146	K 147	E 148	L 149	G 156

F Q G 151 152 153

Pepsin: _____ 153 of 153 ~ 100% Total: 153 of 153 ~ 100%

Figure S4. The sequence map resulted from the pepsin digestion of myoglobin conducted in water-in-oil droplet for 2 mins under room conditions.

Experimental	Absolute	Relative	z	Peak	Theoretical	Error
m/z	Intensity	Intensity (%)		Assignment	m/z	(ppm)
	(a.u.)					
763.3261	1.34E+08	4.93	1+	1-7	763.3262	-0.19
1231.5937	4.18E+08	15.40	1+	1- 11	1231.5959	-1.85
1045.5223	1.38E+08	5.09	3+	1-29	1045.5235	-1.15
1567.7850			2+		1567.7813	2.38
487.2879	1.17E+08	4.30	1+	8-11	487.2880	-0.28
570.2936	2.73E+08	10.07	3+	14- 29	570.2938	-0.43
854.9359			2+		854.9368	-1.09
629.9365	5.80E+08	21.35	5+	30- 55	629.9364	0.12
787.1681			4+		787.1686	-0.57
1049.2212			3+		1049.2222	-0.90
1573.3335			2+		1573.3293	2.65
691.6007	1.82E+08	6.70	4+	33- 55	691.6013	-0.87
921.7977			3+		921.7991	-1.49
1382.1943			2+		1382.1947	-0.33
508.9636	9.91E+08	36.50	3+	56-69	508.9635	0.15
762.9410			2+		762.9414	-0.45
624.6998	1.65E+08	6.09	6+	70-103	624.6999	-0.10
749.4372			5+		749.4383	-1.46
936.5447			4+		936.5459	-1.31
1248.3919			3+		1248.3919	-0.05
797.8630	1.73E+08	6.36	5+	70-105	797.8636	-0.75
997.0765			4+		997.0776	-1.04
1329.1021			3+		1329.1008	0.99
591.2000	2.66E+09	98.08	7+	70-106	591.2003	-0.50
689.5658			6+		689.5657	0.13
827.2769			5+		827.2773	-0.49
1033.8439			4+		1033.8447	-0.77
1378.1223			3+		1378.1236	-0.92
811.4213	5.17E+08	19.03	4+	107-137	811.4217	-0.52
1081.5581			3+		1081.5596	-1.45
643.8331	1.01E+09	37.30	4+	110-134	643.8332	-0.13
858.1077			3+		858.1084	-0.81
1286.6575			2+		1286.6586	-0.88
732.6359	5.57E+08	20.53	4+	110-137	732.6359	0.00
976.5109			3+		976.5119	-1.03
1464.2697			2+		1464.2640	3.89
714.8771	7.87E+07	2.90	4+	111-137	714.8766	0.65
952.8325			3+		952.8329	-0.38
374.2290	5.57E+08	20.50	1+	135-137	374.2291	-0.25
464.9968	2.71E+09	100.00	4+	138-153	464.9974	-1.25
619.6605			3+		619.6605	-0.12
928.9855			2+		928.9869	-1.53
442.2495	3.86E+08	14.22	3+	142-153	442.2474	4.65

Table S6. Peak assignment table for the mass spectrum obtained from the water-in-oil droplet digestion of Mb under room conditions.

G	L	S	D	G	E	W	Q	Q	V	L	N	V	W	G	K	V	E	A	D	I	A	G	H	G	Q	E	V	L	I
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
																													I
R	L	F	Т	G	Н	Р	E	T	L	E	K	F	D	K	F	K	H	L	K	T	Е	А	E	M	K	A	S	E	D
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
L	К	К	H	G	T	V	V	L	T	A	L	G	G	I	L	K	K	K	G	H	H	E	А	E	L	K	P	L	A
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
																													_
Q	S	Н	A	T	K	H	K	I	Р	I	К	ү	L	E	F	I	S	D	A	I	I	H	V	L	H	S	K	H	Р
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
G	D	F	G	А	D	А	0	G	A	M	T	К	А	L	Е	L	F	R	N	D	I	А	A	К	ү	К	E	L	G
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150

F Q G 151 152 153

Pepsin: _____ 153 of 153 ~ 100% Total: 153 of 153 ~ 100%

Figure S5. The sequence map resulted from the pepsin digestion of myoglobin conducted in bulk solution for 2 mins in the presence of ice-water bath.

Experimental	Absolute	Relative	z	Assignment	Theoretical	Error
m/z	Intensity	Intensity (%)			m/z	(ppm)
	(a.u.)					
763.3277	4.27E+07	4.24	1+	1-7	763.3262	1.93
1231.5958	1.14E+08	11.31	1+	1-11	1231.5959	-0.14
1045.5263	2.26E+07	2.24	3+	1-29	1045.5235	2.73
487.2882	6.96E+07	6.90	1+	8-11	487.2880	0.44
797.4217	4.68E+07	4.64	3+	8- 29	797.4208	1.07
570.2943	1.40E+08	13.93	3+	14- 29	570.2938	0.78
854.9372			2+		854.9368	0.44
519.7654	3.61E+07	3.57	2+	20- 29	519.7649	0.93
629.9368	2.94E+08	29.18	5+	30- 55	629.9364	0.64
787.1695			4+		787.1686	1.15
1049.2231			3+		1049.2222	0.93
691.6021	1.08E+08	10.68	4+	33- 55	691.6013	1.25
921.7995			3+		921.7991	0.43
381.9749	4.38E+08	43.38	4+	56-69	381.9746	0.68
508.9641			3+		508.9635	1.11
762.9422			2+		762.9414	1.03
591.2004	9.00E+08	89.24	7+	70-106	591.2003	0.09
689.5666			6+		689.5657	1.34
827.2784			5+		827.2773	1.37
1033.8454			4+		1033.8447	0.73
1378.1250			3+		1378.1236	0.99
624.7006	8.01E+07	7.94	6+	70-103	624.6999	1.08
749.4397			5+		749.4383	1.91
936.5459			4+		936.5459	0.04
665.0547	7.77E+07	7.70	6+	70-105	665.0543	0.54
797.8638			5+		797.8636	0.22
601.3485	3.52E+07	3.49	3+	96-110	601.3458	4.58
759.3871	4.28E+07	4.24	4+	106-134	759.3861	1.26
1012.1790			3+		1012.1789	0.18
811.4225	1.96E+08	19.48	4+	107-137	811.4217	1.05
1081.5608			3+		1081.5596	1.04
643.8339	3.95E+08	39.14	4+	110-134	643.8332	1.09
858.1096			3+		858.1084	1.39
732.6374	1.64E+08	16.25	4+	110-137	732.6359	2.09
976.5132			3+		976.5119	1.35
374.2293	2.75E+08	27.29	1+	135-137	374.2291	0.41
464.9974	7.54E+08	74.73	4+	138-153	464.9974	0.04
619.6613			3+	1	619.6605	1.17
928.9873			2+]	928.9869	0.49

Table S7. Peak assignment table for the mass spectrum obtained from the bulk digestion of Mb in the presence of ice-water bath.

<u>Sequence Maps and Peaks Assignment Tables for Bovine Serum Albumin Using</u> <u>Different Enzymatic Digestion Approach</u>

The pepsin digestion of bovine serum albumin (BSA) was conducted in bulk and droplet respectively at room conditions using the same procedures as Mb. The detailed digestion procedures could be found in the main manuscript. The sequence maps in this section are created with the aid of the web-based application *MSTools*.⁴

Continued on Next Page

D	T	H	K	S	E	I	A	H	R	F	K	D	L	G	E	E	H	F	K	G	L	V	L	I	A	F	S	0	Y	L	0	0	C	P	F	D	E	Н	V
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
K	L	V	N	E	L	Т	E	F	A	K	T	C	V	A	D	E	S	H	A	G	C	E	K	S	L	H	T	L	F	G	D	E	L	C	K	V	A	S	L
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
R	E	T	Y	G	D	M	A	D	C	C	E	K	Q	E	P	E	R	N	E	С	F	L	S	H	K	D	D	S	Р	111	L	Р	K	L	K	P	D	P	N
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110		112	113	114	115	116	117	118	119	120
T	L	C	D	Е	F	К	A	D	Е	К	К	F	W	G	K	ү	L	Y	E	I	A	R	R	H	Р	Y	F	Y	A	P	E	L	L	Y	Y	A	N	K	Y
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
N 161	G 162	V 163	F 164	0 165	E 166	C 167	С 168	0 169	A 170	171	D 172	K 173	G 174	A 175	С 176	177	L 178	P 179	K 180	I 181	E 182	T 183	M 184	R 185	Е 186	K 187	V 188	L 189	T 190	S 191	S 192	A 193	R 194	0 195	R 196	L 197	R 198	C 199	A 200
S	I	0	К	F	G	E	R	A	L	К	A	W	S	V	A	R	L	S	0	K	F	P	K	A	E	F	V	E	V	T	K	L	V	T	D	L	T	K	V
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
H	К	Е	C	С	Н	G	D	L	L	Е	C	A	D	D	R	A	D	L	A	К	¥	I	C	D	N	0	D	T	I	S	S	K	L	K	E	C	C	D	К
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
Р	L	L	Е	К	\$	H	С	I	A	Е	V	Е	К	D	A	I	P	Е	N	L	P	Р	L	T	А	D	F	A	E	D	K	D	V	C	K	N	Y	Q	E
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
A	К	D	A	F	L	G	S	F	L	ү	E	¥	S	R	R	H	Р	Е	Y	A	V	S	V	L	L	R	L	A	K	E	¥	E	A	T	L	E	E	C	С
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
А	К	D	D	Р	Н	A	С	ү	S	т	V	F	D	К	L	К	Н	L	V	D	Е	Р	0	N	L	I	К	0	N	C	D	0	F	E	K	L	G	E	¥
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
G	F	Q	N	A	L	I	V	R	Y	T	R	K	V	P	Q	V	S	T	Р	T	L	V	Е	V	S	R	S	L	G	К	V	G	T	R	C	C	T	К	P
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
E	S	Е	R	M	Р	С	Т	E	D	Y	L	S	L	I	L	N	R	L	C	V	L	H	E	K	T	P	V	S	E	K	V	T	K	C	C	T	E	S	L
441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
V 481	N 482	R 483	R 484	P 485	С 486	F 487	S 488	A 489	490	Т 491	Р 492	D 493	Е 494	T 495	¥ 496	V 497	Р 498	K 499	A 500	F 501	D 502	Е 503	К 504	L 505	F 506	T 507	F 508	H 509	A 510	D 511	I 512	С 513	514	L 515	P 516	D 517	518	E 519	К 520
0 521	J 522	К 523	К 524	0 525	T 526	A 527	L 528	V 529	530	531	L 532	К 533	Н 534	K 535	P 536	K 537	A 538	T 539	E 540	Е 541	0 542	L 543	К 544	T 545	V 546	M 547	E 548	N 549	F 550	V 551	A 552	F 553	V 554	D 555	K 556	C 557	C 558	A 559	A 560
D	n	ĸ	F	۵	c	F	Δ	v	F	G	P	ĸ	1	v	v	s	т	0	т	۵	ĩ	۵																	

D D K E A C F A V E G P K L V V S T Q T A L A 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

Pepsin: 353 of 583 ~ 61% Total: 353 of 583 ~ 61%

Figure S6. The sequence map resulted from the pepsin digestion of BSA conducted in bulk solution for 2 mins under room conditions.

Experimenta	Absolute	Relative	z	Assignment	Theoretical	Error
l m/z	Intensity	Intensity			m/z	(ppm)
	(a.u.)	(%)				
497.0515	6.00E+08	56.33	5+	1- 21	497.0518	-0.51
621.0621			4+		621.0628	-1.03
827.7464			3+		827.7477	-1.65
562.0991	2.72E+08	25.49	5+	1- 24	562.0991	0.03
702.3702			4+		702.3719	-2.46
936.1565			3+		936.1599	-3.61
1111.6250	2.16E+08	20.31	2+	7- 25	1111.6264	-1.32
565.2983	7.50E+07	7.04	1+	25- 29	565.2986	-0.66
704.3462	4.52E+07	4.24	1+	43- 48	704.3466	-0.65
509.2610	3.00E+07	2.82	1+	46- 49	509.2611	-0.19
387.1468	7.42E+07	6.96	1+	59- 62	387.1450	4.51
1202.5544	3.00E+07	2.81	4+	78-119	1202.5496	4.05
350.6902	3.76E+08	35.31	4+	127-137	350.6902	-0.13
467.2509			3+		467.2510	-0.33
700.3717			2+		700.3726	-1.26
353.8667	2.23E+08	20.92	3+	141-148	353.8670	-0.67
530.2962			2+		530.2965	-0.54
634.5423	9.01E+07	8.46	4+	148-168	634.5400	3.58
845.7194			3+		845.7174	2.41
592.2971	5.79E+07	5.43	1+	149-153	592.2982	-1.97
408.2497	3.69E+07	3.46	1+	153-155	408.2498	-0.33
676.3376	2.19E+08	20.5	2+	154-164	676.3382	-0.92
619.7957	1.61E+08	15.13	2+	155-164	619.7962	-0.86
416.2619	5.07E+07	4.75	1+	195-197	416.2621	-0.44
366.2139	4.34E+08	40.69	2+	213-218	366.2141	-0.64
731.4197			1+		731.4204	-0.95
598.6616	2.51E+08	23.51	3+	213-227	598.6620	-0.68
897.4868			2+		897.4890	-2.48
549.6385	3.54E+07	3.32	3+	213-226	549.6392	-1.25
361.1944	4.21E+08	39.51	3+	219-227	361.1946	-0.68
541.2876			2+		541.2880	-0.80
550.2179	4.81E+07	4.51	1+	250-254	550.2183	-0.77
954.1298	5.27E+07	4.95	3+	256-280	954.1267	3.24
1065.7213	2.84E+07	2.67	5+	291-336	1065.7210	0.21
1331.9013			4+		1331.8993	1.51
790.9102	2.72E+07	2.56	6+	317-356	790.9082	2.55
590.6249	9.78E+07	9.17	3+	330-343	590.6256	-1.15
885.4327			2+		885.4345	-1.99
641.3294	5.44E+07	5.11	1+	324-329	641.3299	-0.79
772.3734	3.56E+07	3.34	1+	336-341	772.3742	-1.03
908.4698	3.03E+07	2.84	6+	341-388	908.4655	4.71
307.2237	2.42E+08	22.69	2+	344-348	307.2240	-0.90
613.4394			1+		613.4401	-1.13

798.0392	9.44E+07	8.86	3+	347-367	798.0357	4.38
1196.5445			2+		1196.5496	-4.28
565.9739	9.71E+07	9.12	3+	373-386	565.9742	-0.56
848.4553			2+		848.4574	-2.53
516.9510	3.71E+08	34.85	3+	374-386	516.9514	-0.76
774.9222			2+		774.9232	-1.28
569.8004	4.65E+07	4.36	4+	393-411	569.7988	2.81
759.3961			3+		759.3957	0.51
812.3933	1.23E+08	11.57	1+	400-406	812.3943	-1.30
317.1822	2.80E+07	2.63	1+	404-406	317.1825	-0.99
493.5496	1.49E+08	13.99	4+	406-422	493.5498	-0.28
657.7296			3+	-	657.7304	-1.17
986.0906			2+		986.0917	-1.12
522.3057	5.02E+07	4.71	4+	407-424	522.3065	-1.56
696.0720			3+		696.0727	-0.96
358.2704	9.08E+07	8.52	1+	454-456	358.2706	-0.52
605.3295	8.33E+07	7.81	2+	496-505	605.3299	-0.67
724.4027	4.81E+07	4.51	1+	496-501	724.4034	-1.04
562.9330	6.77E+07	6.35	3+	501-514	562.9331	-0.17
843.8949			2+	-	843.8958	-1.04
492.2371	5.26E+07	4.93	4+	502-518	492.2376	-1.01
655.9814			3+	-	655.9808	0.80
414.2029	3.76E+07	3.53	1+	506-508	414.2029	-0.11
302.2078	5.34E+07	5.01	1+	527-529	302.2080	-0.84
646.3405	8.72E+07	8.19	1+	540-544	646.3412	-1.08
483.2606	9.23E+07	8.66	1+	550-553	483.2607	-0.22
357.2137	2.85E+08	26.78	2+	568-574	357.2138	-0.29
713.4193]		1+		713.4197	-0.65
330.2391	8.31E+07	7.8	1+	574-576	330.2393	-0.59
889.4977	3.82E+08	35.89	1+	575-583	889.4994	-1.96

Table S8. Peak assignment table for the mass spectrum obtained from the bulk digestion of BSA under room conditions.

2. Water-in-oil Droplet Digestion in Room Conditions

D 1	T 2	H 3	K 4	ş	E 6	I 7	А 8	H 9	R 10	F 11	K 12	D 13	L 14	G 15	E 16	E 17	H 18	F 19	K 20	G 21	L 22	V 23	L 24	I 25	A 26	F 27	S 28	Q 29	Y 30	L 31	0 32	0 33	C 34	P 35	F 36	D 37	E 38	H 39	V 40
																									l														
K	L	V	N	E	L	Ţ	E	F	A	K	I	C	V	A	D	E	S	H	A	G	ç	E	K	S	L	H	T	L	F	G	D	E	L	C	K	V	A	S	L
41	42	43	44	45	46	47	48	49	50	21	52	53	54	22	50	57	58	29	60	61	62	63	64	65	00	67	68	69	70	71	12	73	74	75	76		78	79	80
_	_	_		_	_			_	_	_	-		_	_	_	_	_		_	_	_					_	_		_	_		_			.,		_	_	
81	82	83	¥ 84	6 85	В 86	M 87	A 88	89	90	91	Е 92	К 93	0 94	Е 95	96	Е 97	К 98	N 99	100	101	F 102	103	104	H 105	К 106	D 107	108	5 109	Р 110	D 111	112	113	К 114	115	К 116	117	118	119	N 120
T 121	L 122	С 123	D 124	Е 125	F 126	K 127	A 128	D 129	Е 130	K 131	K 132	F 133	W 134	G 135	K 136	ү 137	L 138	Y 139	E 140	I 141	A 142	R 143	R 144	H 145	Р 146	Y 147	F 148	Y 149	A 150	Р 151	Е 152	L 153	L 154	Y 155	Y 156	A 157	N 158	K 159	Y 160
N	G	v	F	Q	E	с	с	Q	A	E	D	к	G	A	С	L	L	Р	к	I	E	т	м	R	E	к	v	L	т	s	S	A	R	Q	R	L	R	с	A
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
S 201	1 202	0 203	К 204	F 205	G 206	E 207	R 208	A 209	L 210	К 211	A 212	W 213	S 214	V 215	A 216	R 217	L 218	S 219	0 220	K 221	F 222	P 223	К 224	A 225	E 226	F 227	V 228	E 229	V 230	T 231	К 232	L 233	V 234	T 235	D 236	L 237	T 238	К 239	V 240
н	к	Е	с	с	Н	G	D	L	L	E	с	A	D	D	R	A	D	L	A	к	Y	I	с	D	N	Q	D	т	I	s	S	к	L	к	Е	с	с	D	к
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
		-		~			-	-	•		v	F	~	-	•			F					-	-	•	_	-	•	-	D	~		v	<i>c</i>	v	N			-
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	А 296	297	298	299	300	301	302	303	304	305	А 306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
A 321	К 322	D 323	A 324	F 325	L 326	G 327	S 328	F 329	L 330	ү 331	E 332	Y 333	S 334	R 335	R 336	H 337	P 338	E 339	Y 340	A 341	V 342	S 343	V 344	L 345	L 346	R 347	L 348	A 349	К 350	Е 351	Y 352	E 353	A 354	T 355	L 356	Е 357	Б 358	С 359	С 360
																									_														
A 361	К 362	р 363	D 364	Р 365	Н 366	A 367	С 368	Y 369	S 370	T 371	V 372	F 373	D 374	К 375	L 376	К 377	Н 378	L 379	V 380	D 381	Е 382	Р 383	0 384	N 385	L 386	387	К 388	0 389	N 390	С 391	D 392	0 393	F 394	Е 395	К 396	L 397	G 398	399	Y 400
							1																					-											
G 401	F 402	0 403	N 404	A 405	L 406	I 407	V 408	R 409	Y 410	T 411	R 412	K 413	V 414	P 415	0 416	V 417	S 418	T 419	P 420	T 421	L 422	V 423	E 424	V 425	S 426	R 427	S 428	L 429	G 430	К 431	V 432	G 433	T 434	R 435	C 436	C 437	T 438	К 439	P 440
																						1																	
E	S	E	R	M	P	C	T	E	D	Y	L	S	L	I	L	N 457	R	L	C	V	L	H	E	K	T	P	V	S	E	K	V	,T,	K	C.	C	, T ,	E.	S	L
441	442	443	444	445	440	447	440	449	450	431	432	433	454	455	430	437	430	433	400	401	402	403	404	405	400	407	408	409	470	4/1	472	473	4/4	475	470	477	478	4/3	400
					_	_				_	_		_	_			_					_			_				_		_	_	_		_	-			
V 481	N 482	R 483	R 484	Р 485	C 486	F 487	S 488	A 489	490	491	Р 492	D 493	E 494	f 495	Y 496	V 497	P 498	K 499	A 500	F 501	D 502	E 503	K 504	505	F 506	T 507	F 508	H 509	A 510	D 511	1 512	C 513	T 514	515	Р 516	D 517	T 518	E 519	K 520
Q.	I	K	K	<u>0</u>	Ţ	A	L	V	E	L	L	K	H	K	P	K.	A	T	E	E,	9	L	K	Ţ	V	M	E	N	F	V.	A	F.	V	D	K	<u>C</u> ,	C.	A	A
521	322	523	524	323	320	521	328	329	320	331	332	333	354	333	330	337	338	339	540	541	342	343	544	343	340	34/	346	349	224	221	332	333	334	333	220	221	330	329	200

D D K E A C F A V E G P K L V V S T O T A L A 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 Pepsin: 342 of 583 ~ 59% Total: 342 of 583 ~ 59%

Figure S7. The sequence map resulted from the pepsin digestion of BSA conducted in water-in-oil droplet for 2 mins under room conditions.

Experimental	Absolute	Relative	z	Assignmen	Theoretica	Error (ppm)
m/z	Intensity	Intensit		t	l m/z	
	(a.u.)	y (%)				
562.0980	3.71E+08	100.00	5+	1-24	562.0991	-1.86
702.3691			4+		702.3719	-3.95
1111.6227	5.45E+07	14.69	2+	7- 25	1111.6264	-3.35
361.1714	7.71E+06	2.08	1+	43- 45	361.1723	-2.59
575.3032	7.50E+06	2.02	1+	43- 47	575.3040	-1.36
509.2598	1.15E+07	3.11	1+	46-49	509.2611	-2.62
1121.1152	1.26E+07	3.40	5+	70-118	1121.1139	1.14
989.5120	2.30E+07	6.21	6+	113-160	989.5072	4.80
1187.2042			5+		1187.2071	-2.43
1483.7612			4+		1483.7569	2.91
827.7432	4.26E+07	11.47	3+	115-135	827.7427	0.59
700.3707	3.08E+07	8.31	2+	127-137	700.3726	-2.69
530.2952	3.37E+07	9.07	2+	141-148	530.2965	-2.52
592.2965	9.39E+06	2.53	1+	149-153	592.2982	-3.00
676.3361	3.75E+07	10.10	2+	154-164	676.3382	-3.16
619.7943	2.85E+07	7.67	2+	155-164	619.7962	-3.11
416.2612	1.12E+07	3.02	1+	195-197	416.2621	-2.15
598.6602	2.34E+08	63.02	3+	213-227	598.6620	-2.97
366.2135	1.26E+08	33.97	2+	213-218	366.2141	-1.76
731.4177			1+		731.4204	-3.67
549.6374	1.70E+07	4.58	3+	213-226	549.6392	-3.14
541.2866	1.22E+08	32.96	2+	219-227	541.2880	-2.60
467.7522	7.87E+06	2.12	2+	219-226	467.7538	-3.39
550.2168	1.71E+07	4.61	1+	250-254	550.2183	-2.83
843.3924	6.52E+06	1.76	2+	258-272	843.3885	4.57
926.2702	2.09E+07	5.64	5+	317-355	926.2715	-1.41
943.4827	6.20E+06	1.67	3+	338-362	943.4790	3.88
1089.9594	3.47E+07	9.35	5+	341-388	1089.9570	2.21
1362.1915			4+		1362.1943	-2.07
1333.6719	1.96E+07	5.29	4+	345-390	1333.6682	2.82
798.0367	7.44E+06	2.01	3+	347-367	798.0357	1.32
516.9499	4.09E+07	11.02	3+	374-386	516.9514	-3.05
774.9205			2+		774.9232	-3.50
812.3904	3.64E+07	9.81	1+	400-406	812.3943	-4.86
657.7284	5.81E+07	15.65	3+	406-422	657.7304	-2.97
986.0876			2+		986.0917	-4.10
696.0708	2.31E+07	6.23	3+	407-424	696.0727	-2.67
1043.6013			2+		1043.6051	-3.68
885.4284	8.14E+06	2.19	2+	442-456	885.4266	1.96
358.2701	1.64E+07	4.43	1+	454-456	358.2706	-1.55
1070.5365	1.11E+07	2.98	5+	465-511	1070.5349	1.44
1337.9153	1337.9153			1	1337.9167	-1.04
1022.1059	1.11E+07	2.99	5+	472-516	1022.1038	2.00

605.3279	3.00E+07	8.08	2+	496-505	605.3299	-3.33
873.4741	1.31E+08	35.29	2+	512-526	873.4775	-3.86
757.7434	3.86E+06	1.04	3+	532-550	757.7443	-1.17
646.3388	2.84E+07	7.67	1+	540-544	646.3412	-3.72
713.4174	1.39E+07	3.74	1+	568-574	713.4197	-3.20

Table S9. Peak assignment table for the mass spectrum obtained from the water-in-oil droplet digestion of BSA under room conditions.

Evaluation on the Effect of Droplet Size on the Deuterium Uptake

In this section, the experimental procedures illustrated in Figure 2B of the main manuscript is adopted to evaluate the effect of droplet size on the deuterium uptake. Experimentally, a 20 μ M fully deuterated Mb sample was first prepared by incubating 500 μ M Mb stock solution (prepared in 1.25M ammonium acetate) in 96% (v/v) D₂O at 65°C for 3 hours. Pepsin digestion of the fully deuterated Mb was then conducted by adding 2.5 μ L of the fully deuterated Mb into 22.5 μ L 11.1 μ M pepsin solution prepared in 0.5% formic acid (pH~2.0). The volume and molar protein-to-pepsin ratios were 1-to-9 and 1-to-5, respectively. The pepsin digestion of Mb was carried out in a capped Eppendorf tube for 2 mins, followed by the addition of 25 μ L acetonitrile (ACN) for digestion quenching. 1.0 μ L or 0.5 μ L of this deuterated Mb digest was then added into the cyclohexane reservoir preloaded in a cut Eppendorf tube. The back exchange reaction of the deuterated Mb digest was allowed to proceed in the water-in-oil-droplet for a predefined duration, followed by the LMJ-SSP-MS analysis. The experiment was performed using four time points, i.e., 0, 2, 5 and 10 mins.

Figure S7 showed the deuterium uptake recorded the deuterium uptake when 1.0 μ L (red bars) and 0.5 μ L (blue bars) of deuterated Mb digest was added into the cyclohexane reservoir. The two droplet volumes resulted in highly comparable deuterium uptake for all the fragments across time.

References

- 1. Liyanage, O. T., Seneviratne, C. A., & Gallagher, E. S. (2019). Applying an internal standard to improve the repeatability of in-electrospray H/D exchange of Carbohydrate-Metal adducts. *Journal of the American Society for Mass Spectrometry*, 30(8), 1368–1372.
- 2. Weis, D. D., Engen, J. R., & Kass, I. J. (2006). Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. *Journal of the American Society for Mass Spectrometry*, 17(12), 1700–1703.
- 3. Hamuro, Y. (2020). Tutorial: Chemistry of Hydrogen/Deuterium Exchange Mass Spectrometry. *Journal of the American Society for Mass Spectrometry*, 32(1), 133–151.
- 4. Kavan, D., & Man, P. (2011). MSTools—Web based application for visualization and presentation of HXMS data. *International Journal of Mass Spectrometry*, 302(1–3), 53–58.