Thermal evaporation as sample preparation for silver-assisted laser desorption/ionization mass spectrometry imaging of cholesterol in amyloid tissues

Štěpán Strnad^a, Vladimír Vrkoslav^a, Anna Mengr^a, Ondřej Fabián^{b,c}, Jiří Rybáček^a, Miloš Kubánek^b, Vojtěch Melenovský^b, Lenka Maletínská^a, Josef Cvačka^a

^a Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic

^b Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic

^c Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 140 59, Prague, Czech Republic

*Correspondence to: Vladimír Vrkoslav (vladimir.vrkoslav@uochb.cas.cz), Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, Prague 6, 166 10, Czech Republic

Name	Value	Units
Rise Time 1	00:30	mm:ss
Soak Power 1	10.0	%
Soak Time 1	00:30	mm:ss
Rise Time 2	00:30	mm:ss
Soak Power 2	15.0	%
Soak Time 2	00.20	mm:ss
Idle Ramp Time	00.30	mm:ss
Rate	5.000	Å/s
Final Thickess	0.060 or 0.11 or 0.22	kÅ
Thickess Set Point	0.060 or 0.11 or 0.22	kÅ
Control Gain	10	Å/s/%

Supplementary Tab. 1. Thermal evaporation settings.

Supplementary Fig. 1. A) Ion yield and B) mass resolution plots as a function of laser intensity for different thicknesses of Ag. Cholesterol at m/z 493.2 $[M + {}^{107}Ag]^+$. Average of 5 spectra from AgLDI of a mouse brain cortex region.

Supplementary Fig. 2. Representative spectra from AgLDI of a mouse brain section in the cortex region in positive ion mode. Section with Ag film with a thickness of 22 nm deposited using thermal evaporation showing various silver clusters.

Supplementary Fig. 3. Reproducibility of the sample preparation process and analysis. AgLDI MSI (Ag 6 nm) of three consecutive sections of a single brain. Distribution of cholesterol at m/z 493.2 [M + ¹⁰⁷Ag]⁺ using a spatial resolution of 70 μ m.

Supplementary Fig. 4. AgLDI MSI (Ag 6 nm) analysis of a frontal cortex section (APP/PS1 mice and age-matched WT controls). Ion images of cholesterol (green, m/z 493.2, $[M + {}^{107}Ag]^+$) at a spatial resolution of 20 μ m.

Supplementary Fig. 5. MALDI MSI (Ag 6 nm) analysis of a frontal cortex section (APP/PS1 mice and age-matched WT controls). Ion images of ganglioside (red, m/z 1179.7 [M – H]⁻) at a spatial resolution of 20 μ m.

Supplementary Fig. 6. Congo red amyloid staining. Images of a control myocardial section (left) and an ATTR-affected myocardial section (right) under a light microscope.

Supplementary Fig. 7. AgLDI MSI (Ag 6 nm) analysis of control (left) and ATTR-affected (right) myocardial section. Ion image cholesterol (m/z 493.2, $[M + {}^{107}Ag]^+$) at a spatial resolution of 20 μ m.

Supplementary Fig. 8. Congo red amyloid staining and AgLDI MSI (Ag 6 nm) analysis of ATTR-affected myocardial section. Ion image cholesterol (m/z 493.2, $[M + {}^{107}Ag]^+$) at a spatial resolution of 10 μ m.

Supplementary Fig. 9. Congo red amyloid staining. Images showing non-serial sections of an ATTR-affected myocardial section under a light microscope. The serial sections in between were analyzed by AgLDI.