Paper strip colorimetry for putrescine and spermidine detection using hybrid organicinorganic perovskite with Eu³⁺ complex

Truong Thi Thuy^{1,§}, Bui The Huy^{1,§}, Le Thi Cam Huong¹, Hai Bang Truong^{2,3}, Yong-Ill Lee^{1,4,*}

¹Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea

²Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

³Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

⁴Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Uzbekistan

Figure S1: The influence of (a) poloxamer-188 on the quenching efficiency of the OPI-EuDPA mixture by 50 μ M PUT/ SPD; (b) in the various ratio of EuDPA and OPI solution.

Figure S2: A study on available selectivity (a) and (b) interferences (b) of the proposed sensor exhibited high selectivity for putrescine and spermidine at a concentration of 50 μ g/mL.

MS analysis: Mass spectrometry analyses were conducted utilizing a Thermo Fisher Scientific LCQ Fleet linear ion trap mass spectrometer (San Jose, CA, USA). The ion injection time was set to a maximum of 50 ms with 10 microscans per spectrum. Thermo Fisher Scientific Xcalibur 4.1 software was utilized for the collection and analysis of MS data. Tandem MS employing collision-induced dissociation (CID) was employed for analyte classification. Putrescine and spermidine in human serum were identified using 0.1% formic acid in water as the spray solvent. Mass spectral analysis were conducted within the m/z range of 50 to 200.

211206_Huong_C2_FullMS2_B #1-161 RT: 0.00-0.50 AV: 161 NL: 1.41E3 T: ITMS + p NSI Full ms [50.00-200.00]

Figure S3: Typical MS spectra obtained from the serum samples for SPD (m/z 146) and PUT (m/z 90).

Table S1: Determination of PUT and SPD in serum samples using MS			
	Spiked (µM)	Putrescine (µM)	Spermidine (µM)
Serum sample# 1	1.50	1.70 ± 0.07	1.77 ± 0.24
Serum sample#2	1.50	1.65 ± 0.06	1.84 ± 0.16