Supplementary Materials

Simultaneous quantitative LC-MS/MS analysis of 13 apolipoproteins

and lipoprotein (a) in human plasma

Yuxuan Zhang et al

Supplemental Table

Supplemental Table S1. The MRM transitions, decluttering potential and collision energy of each peptide and its internal standards.

Supplemental Table S2. Effects of different trypsin: plasma protein ratio on measured apolipoproteins and Lp(a).

Supplementary Table S3. The matrix factor of all measured peptide segments of apolipoproteins and Lp(a) in mice plasma.

Supplemental Table S4. Demographical characteristics and distribution of apolipoproteins and Lp(a) concentration in the human plasma from 45 volunteers.

Supplemental Figures

Supplementary Figure S1. The total (A) and dynamic multiple reaction monitoring (B) chromatograms of the internal standards of each peptide in a standard solution mixture.

Supplementary Figure S2. Effects of solid phase extraction on the dynamic multiple reaction monitoring (MRM) chromatograms containing mixed peptide standards. (A) human plasma without SPE extraction (B) human plasma with HLB SPE extraction.

Supplementary Figure S3. Effects of different reducing agents on the total ion chromatograms containing mixed peptide standards and representative internal standards. (A) Extraction by adding reducing agent DTT. (B) Extraction by adding reducing agent TCEP.

Supplemental Figure S4. Effects of different concentrations of SDC on sample preparation. (A) 0.5% SDC, (B) 1% SDC, (C) 2% SDC.

Supplemental Figure S5. The dynamic multiple reaction monitoring (MRM) chromatograms of different matrix solutions containing representative internal standards. (A) bovine serum albumin, (B) mice plasma.

Supplemental Table S1. The MRM transitions, collision energy, decluttering potential, and cell exit potential of each peptide and its internal standards.

Peptide	Protein name	Peptide name	Protein MW (Kda)	Peptide MW	Precursor ion	Product ion	DP	CE	SIL
VQPYLDDFQK	apoA1	apoA1-VQPY	30.8	1252.3718	627.1	1025.7 1008.4	44 23	23 24	apoA1-IS
VQPYLDDFQK*	apoA1	apoA1-IS	/	1260.3859	631.1	1033.7 1016.4	46 40	21.3 25.6	1
VSFLSALEEYTK	apoA1	apoA1-VSFL	30.8	1386.5453	694.1	940.3 853.4	72 106	33 30	apoA1-IS
<u>SPELQAEAK</u>	apoA2	apoA2-SPEL	11.2	972.0506	487.1	442.8 659.4	87.3 44	24 26	apoA2-IS
SPELQAEAK*	apoA2	apoA2-IS	/	980.0648	491.1	450.8 667.4	87.3 44	24 26	/
EQLTPLIK	apoA2	apoA2-EQLT	11.2	941.1227	471.5	684.4 571.5	51.4 128.5	20 28	apoA2-IS
VQELQEQLR	apoA5	apoA5-VQEL	41.2	1142.2629	571.9	673.6 915.4	38 40	24 29.6	apoA5-IS
VQELQEQLR*	apoA5	apoA5-IS	/	1152.2711	576.9	683.6 925.4	40 45	30 28	/
FPEVDVLTK	apoB	apoB-FPEV	515.6	1047.2016	524.5	450.5 803.6	149.7 139.4	23 30	apoB-IS1
FPEVDVLTK*	apoB-IS	apoB-IS1	1	1055.2157	528.5	811.6 908.6	139.4 60	30 30	/
TEVIPPLIENR	apoB	apoB-TEVI	515.6	1280.4697	641.1	838.7 741.2	67.4 56	25.2 33	apoB-IS2
TEVIPPLIENR*	apoB-IS	apoB-IS2	/	1290.4780	646.1	848.7 751.2	65.2 27	29 32	1
TGISPLALIK	apoB	apoB-TGIS	515.6	1012.2437	507.1	741.7 654.6	32 25	22 23	apoB-IS

FEGNTI EDK	apoC1	apoC1-EFGN	9.3	1052.0922	527.1	391.3	41	22	apoC1-IS
		02111	776.4	31	24	apoortio			
FEGNTI EDK*	anoC1	anoC1-IS	1	1060 1064	531.1	399.3	41	24	1
	apoor	apoor lo	,	1000.1004	001.1	784.4	44	22	,
	anoC1	apoC1-I GPI	03	968 1083	527	391.3	41	22	anoC1-IS
		500.1005	521	776.4	31	24	apoc 1-15		
	anoC2	anoC2-TVI P	11 3	1035 1478	518 3	658.3	60	24.2	anoC2-IS
	apooz	ap002-11Ll	11.5	1033.1470	510.5	771.6	68	20.8	ap002-10
	20002	anoC2 IS	1	4040 4040	500.3	666.3	128	25	1
TILFAVDER	apucz	ap002-13	7	1043.1019	522.5	779.6	86	23	7
	anaC2		11 0	1027 1040	510 F	865.7	128	25	
TAAQINLTEN	apocz	apocz-raag	11.3	1037.1240	519.5	666.5	86	25	apocz-15
	anaC2	anaC2	10.0	1106 2095	509.0	854.6	60	27.1	apoC3-IS
GWVIDGFSSLK	apoc3	apoC3	10.9	1196.3085	598.9	343.2	40	23.6	
		apoC3-IS	/	1204.3226	500.0	854.6	60	27.1	/
GWVIDGFSSLK"	apoC3				598.9	343.2	40	23.6	
	apoD	5	04.0	4000 0000	040	890.6	131	32	apoD-IS
NILISNNIDVK		арор	21.3	1230.3680	616	789.4	146	31	
	D	D 10	,	4000 0004	000	898.6	144	28	/
NILTSNNIDVK*	арор	apoD-15	/	1238.3821	620	797.4	102	35	
	F		00.0	000 4000	404.0	588.5	60	30.6	apoE-IS
LGPLVEQGR	арон	apoE-LGPL	36.2	968.1083	484.8	701.6	50	31.1	
	= 10	F 10	/		400.0	598.5	60	30.8	1
LGPLVEQGR [*]	apoE-IS	apoE-IS		978.1165	489.8	711.6	50	31.7	
	_				= 40.0	625.5	100	39	apoE-IS
AATVGSLAGQPLQER	apoE	apoE-AATV	36.2	1497.6524	749.6	642.3	139.1	36.1	
		ароН ароН	38.3	1022.1126	= 1 0 0	652.4	66	22	apoH-IS
ATVVYQGER	ароН				512.0	751.4	75	15	
	ароН ароН-IS / 1032.1209			4000 4000	- 4 - 0	662.4	52	33	
ATVVYQGER*		517.0	761.4	67	15	/			
VTTVASHTSDSDVPS	VASHTSDSDVPS		507.9	50	30.2				
	apoJ	apoJ	51.1	2314.5021	4.5021 772.4	650.0	15	20.0	apoE-IS

	anal 1	anal 1	56	771 9600	206.0	473.4	53	27	anal 1 IS
ALDINLAR	apori	apori	50	771.0020	300.9	588.5	60	30.6	apor 1-13
	anal 1		,	704 0700	201.0	483.4	51	23.8	1
ALDINLAR	apor	apor 1-12	1	/81.8/03	391.9	598.5	93	17	7
	M	N 4	04.0	004.0000	440.0	565.3	125	20	
FLLYNR	ароілі	аром	21.2	824.9660	413.0	452.3	100	20	apoivi-15
	an a M	anaM IC	04.0	004 0740	440.0	575.3	119	32	1
FLLYNK	аром	apoin-15	21.2	834.9743	418.0	462.3	102	32	1
			,	1000 1101		1005.3	60	37.1	Lp(a)-
IPENIPNAGLIR	Lp(a)	Lp(a)-TPEN	1	1332.4184	000.9	728.2	80	37.4	TTPÈŃ-IS
	Lp(a)-TPEN-		,	4040 4007	672.4	738.4	25	39.2	1
IPENIPNAGLIR"	ÍS	Lp(a)-1PEN-15	1	1342.4267		1015.3	65	28.2	/
	1 = (=)	$ \pi(z)\rangle O OO$,	070 0505	5 489.9	808.3	30	21.8	Lp(a)-
GISSTIVIGR	Lp(a)	Lp(a)-GISS	1	978.0585		533.3	40	25.2	GISS-IS
	405.0	543.2	30	22.5	,				
GISSTIVIGR*	ÍS	Lp(a)-GISS-IS	1	988.0668	495.3	818.2	31	22.8	1

Note: * are the internal standards peptides and the bottom line is the quantitative peptides.

Supplemental Table S2 Effects of different trypsin: plasma protein ratio on measured apolipoproteins and Lp(a).

	Relative deviation (%)							
Peptide	1 μg (1:14)	2 μg (1:7)	4 μg (1:3.5)					
ApoA1	2.43	4.96	-6.46					
ApoA2	3.05	5.22	-14.04					
ApoA5	13.43	12.62	11.5					
АроВ	5.19	10.3	10.82					
ApoC1	0.98	1.6	-6.26					
ApoC2	2.01	-0.78	-0.48					
АроС3	3.63	4.62	-12.3					
ApoD	5.25	4.67	-0.41					
ApoE	1.24	-1.43	-0.85					
АроН	1.01	-2.85	-0.39					
ApoJ	12.07	-3.16	-2.66					
ApoL1	2.09	-11.55	-9.2					
АроМ	2.36	-6.47	-4.81					
Lp(a)	5.25	-7.51	3.57					

	LC	LQC		9C	HQC		
Peptide	Con (ng/ml)	% MF	Con (ng/ml)	% MF	Con (ng/ml)	% MF	
ApoA1	12500	99.10	25000	104.65	100000	101.03	
ApoA2	6250	78.02	12500	87.56	50000	79.19	
ApoA5	1.25	303.74	2.5	69.91	10	52.57	
АроВ	312.5	99.22	625	94.19	2500	95.88	
ApoC1	625	96.36	1250	102.41	5000	97.29	
ApoC2	781.25	95.12	1562.5	96.86	6250	90.33	
АроС3	1562.5	97.00	3125	99.40	12500	95.74	
ApoD	1562.5	96.23	3125	107.10	12500	100.32	
ApoE	156.25	89.51	312.5	99.08	1250	93.16	
АроН	625	99.69	1250	98.84	5000	93.94	
ApoJ	1562.5	95.15	3125	70.43	12500	65.18	
ApoL1	312.5	86.86	625	72.11	2500	73.21	
АроМ	156.25	83.66	312.5	79.92	1250	73.11	
Lp(a)	31.25	88.43	62.5	113.24	250	95.62	

Supplementary Table S3. The matrix factor of all measured peptide segments of apolipoproteins and Lp(a) in mice plasma.

	Volunteers (N=45)				
Demographical characteristics					
Age	57.6±14.7				
Sex (Male, %)	23 (51.1%)				
ALT (U/L)	32.6±35.5				
AST (U/L)	29.2±17.1				
TC (mmol/L)	4.3±1.4				
TG (mmol/L)	1.9±1.6				
HDL (mmol/L)	1.1±0.2				
LDL (mmol/L)	2.5±1.1				
Glucose (mmol/L)	6.4±2.2				
Protein concentration					
ApoA1 (g/L)	0.99±0.22				
ApoA2 (g/L)	0.19±0.05				
ApoA5 (mg/L)	0.24±0.16				
ApoB (g/L)	0.62±0.23				
ApoC1 (mg/L)	30.31±12.38				
ApoC2 (mg/L)	33.89±29.63				
ApoC3 (mg/L)	52.48±43.7				
ApoD (mg/L)	16.62±6.23				
ApoE (mg/L)	55.02±52.29				
ApoH (mg/L)	89.32±17.43				
ApoJ (mg/L)	204.09±50.91				
ApoL1 (mg/L)	30.28±10.15				
ApoM (mg/L)	10.26±2.99				
Lp(a) (nmol/L)	58.04±68.24				

Supplemental Table S4. Demographical characteristics and distribution of apolipoproteins and Lp(a) concentration in the human plasma from 45 volunteers.

Note: All values are reported in the form of mean \pm standard deviation.

Supplementary Figure S1. The total (A) and dynamic multiple reaction monitoring (B) chromatograms of the internal standards of each peptide in a standard solution mixture.

Supplementary Figure S2. Effects of solid phase extraction on the dynamic multiple reaction monitoring (MRM) chromatograms containing peptide standards and representative internal standards. (A) human plasma without SPE extraction (B) human plasma with HLB SPE extraction.

Supplementary Figure S3. Effects of different reducing agents on the total ion chromatograms containing mixed peptide standards. (A) Extraction by adding reducing agent DTT. (B) Extraction by adding reducing agent TCEP.

Supplemental Figure S4. Effects of different concentration of SDC on sample preparation. (A) 0.5% SDC, (B) 1% SDC, (C) 2% SDC.

Supplemental Figure S5. The dynamic multiple reaction monitoring (MRM) chromatograms of different matrix solutions containing representative internal standards. (A) bovine serum albumin, (B) mice plasma.

