Supplementary file of

A SARS-CoV-2 M^{pro} Fluorescent Sensor for Exploring the Pharmacodynamic Substances from Traditional Chinese Medicine

Lei Han^{a,1}, Bing Wang^{b,1}, Kunhui Sun^b, Muqadas Sitara^a, Meifang Li^b, Ping Wang^b,

Ning Chen^b, Xie-an Yu^{b,*}, Jiangwei Tian^{a,*}

^a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM

Evaluation and Translational Research, School of Traditional Chinese Pharmacy,

China Pharmaceutical University, Nanjing, 211198, People's Republic of China

^b NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese

Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, People's Republic

of China

¹ The author contributed equally to first author

* Corresponding author: Xie-an Yu, E-mail address: yuxieanalj@126.com; Jiangwei Tian, E-mail address: jwtian@cpu.edu.cn

Figure S1. The MS fragment of TPE-Ph-In.

Figure S2. The MS fragment of the substrate (S-TLG).

Figure S3. The hydrodynamic size of TPE-Ph-In determined by DLS.

Figure S4. The Zeta potential of TPE-Ph-In.

Figure S5. The Zeta potential of S-TLG.

Figure S6. The hydrodynamic diameter of the TPE-S-TLG sensor during seven days.

Figure S7. The zeta potential of the TPE-S-TLG sensor during seven days.

Figure S8. Influence of different reaction systems on M^{pro} detection (a: buffer:sensor = 2:3; b: buffer:sensor = 1:1; c: buffer:sensor = 3:2).

Figure S9. Influence of different reaction solutions on M^{pro} detection.

Figure S10. Influence of different reaction temperature on M^{pro} detection.

Figure S11. Influence of different reaction time on (A) the TPE-S-TLG sensor and (B/C) M^{pro} detection.

Figure S12. The inhibitory activity of ebselen on the SARS-CoV-2 Mpro.

Drug	IC ₅₀	R ²
Ebselen	1.735 μM	0.9651
XBJ injection	44.09 (dilution ratio)	0.9895

Table S1. The IC₅₀ of ebselen and Xuebijing injection on M^{pro}.

Figure S13. Effect of different mobile phases on separation of Xuebijing injection.

Figure S14. HPLC chromatograms of the Xuebijing injection at different wavelengths.

Figure S15. Effect of column temperature on the separation of Xuebijing injection.

Figure S16. HPLC chromatograms of Xuebijing injection under different flow rate conditions.

Time (min)	A%	B%
0	2	98
26	16	84
30	19	81
38	22	78
48	30	70
60	33	67

Table S2. Time program of the gradient elution in HPLC.

Figure S17. Typical HPLC chromatograms of blank solvent and Xuebijing injection.

Figure S18. The impact of organic solvents on (A) the TPE-S-TLG sensor and (B) SARS-CoV-2 M^{pro} (Data are means \pm SD, the values relative to the control groups, n = 3, ** p < 0.01 and *** p < 0.001).

Figure S19. The inhibitory activity of Xuebijing injection fractions on SARS-CoV-2 M^{pro}.

				1		5	0 1
No.	Identification	RT	Formula	Found at	ion	ррт	MS/MS Fragmentation ions
		(min)		Mass			
1	Sucrose	2.132	$C_{12}H_{22}O_{11}$	341.1083	$[M-H]^-$	-1.8	179.0556[M-H-C ₆ H ₁₀ O ₅] ⁻
	0						375.1279[M-H] ⁻ ;
r	o- Dahangayinaa	2 561	СИО	421 1244		0.4	345.1173[M-H-CH ₂ O] ⁻ ;
Ζ	Debenzoyipae	5.301	$C_{16}H_{24}O_{10}$	421.1344	[M+HCOO]	-0.4	195.0655[M-H-Glc] ⁻ ;
	onifiorgenin						165.0551[M-H-Glc-CH ₂ O] ⁻
2	TT · 1·	2 (74		242.0(19		1.0	200.0568[M-H-CONH] ⁻ ;
3	Uridine	3.6/4	$C_9H_{12}N_2O_6$	243.0618	[M-H]	-1.8	110.0247[M-H-C ₅ H ₉ O ₄] ⁻
4	Ribonolactone	4.198	$C_5H_8O_5$	147.0296	$[M-H]^-$	-2.0	129.0186[M-H-H ₂ O] ⁻ ;

Table S3. Compounds identified from Xuebijing injection.

No.	Identification	RT	Formula	Found at	ion	ppm	MS/MS Fragmentation ions
		(min)		Mass			
							103.0391[M-H-CO ₂] ⁻ ;
							87.0083[M-H-C ₂ H ₄ O ₂] ⁻ ;
							85.0293[M-H-H ₂ O-CO ₂] ⁻ ;
							$57.0344[M-H-C_3H_6O_3]^-$
5	Gallic acid	1 802	C-H-O-	160 01/1	[M_H]-	_1 1	125.0241[M-H-CO ₂] ⁻ ;
5	Game acid	H.07 2	0/11605	107.0141	[141-11]	-1.1	107.0128[M-H-CO ₂ -H ₂ O] ⁻
							271.0451[M-H-C ₂ H ₄ O ₂] ⁻ ;
6	β-Glucogallin	5.024	$C_{13}H_{16}O_{10}$	331.0668	[M-H] ⁻	-0.8	211.0239[M-H-2C ₂ H ₄ O ₂] ⁻ ;
							$169.0136[M-H-C_6H_{10}O_5]^-$
7	Guanosine	5.050	$C_{10}H_{13}N_5O_5$	282.0839	[M-H] ⁻	-1.6	150.0418[M-H-C ₅ H ₈ O ₄] ⁻
	1'-0-						313.0560[M-H-C ₆ H ₁₂ O ₆] ⁻ ;
8	Galloylsucros	8.746	$C_{19}H_{26}O_{15}$	493.1194	[M-H] ⁻	-1.1	$283.0455[M-H-C_6H_{12}O_6-CH_2O]^-;$
	e						$169.0144[M-H-C_{12}H_{20}O_{10}]^{-}$
							179.0342[M-H-H ₂ O] ⁻ ;
9	Tanshinol	10.585	$C_9H_{10}O_5$	197.0454	[M-H] ⁻	-0.7	135.0446[M-H ₂ O-COOH] ⁻ ;
							123.0442[M-CH ₃ O ₃] ⁻
	6'- <i>O</i> -						313.0556[M-H-C/H12O/] ⁻ ·
10	Galloylsucros	11.575	$C_{19}H_{26}O_{15}$	493.1194	[M-H] ⁻	-1.0	$169.0131[M-H-C_{10}H_{20}O_{10}]^{-1}$
	e isomer						
	3-						$191.0556[M-H-C_9H_6O_3]^-;$
11	Caffeoylquini	14.464	$C_{16}H_{18}O_9$	353.0873	[M-H] ⁻	-1.4	$179.0345[M-H-C_7H_{10}O_5]^-;$
	с						$135.0452[M-H-C_8H_{10}O_7]^-$
	Protocatechual						109.0287[M-H-CO] ⁻ ;
12	dehyde	14.788	$C_7H_6O_3$	137.0242	[M-H] ⁻	-1.6	108.0212[M-H-CHO] [−] ;
							91.0188[M-H-CH ₂ O ₂] ⁻
	6-O-Galloyl-						497.1282[M-CH ₂ OH] [−] ;
13	desbenzoypae	14.988	C ₂₃ H ₂₈ O ₁₄	527.1395	[M-H] ⁻	-2.1	$479.1193[M-CH_2OH-H_2O]^-;$
	oniflorin						$313.0566[M-C_{10}H_{14}O_5]^-;$
	Isomer						$169.0148[M-C_{16}H_{22}O_9]^-$
	NG 1 · · 1						343.1398[M-H];
14	Mudanpioside	15.146	$C_{16}H_{24}O_{8}$	389.1447	[M+HCOO]-	-1.6	$181.0867[M-H-C_6H_{10}O_5]^-;$
	F						$163.0/64[M-H-C_6H_{10}O_5-H_2O];$
							$151,0/63[M-H-C_6H_{10}O_5-CH_2O]$
1.7	A 1.1.	15 100	C U O	451 1040	FN (111-	0.0	$289.0709[M-H-C_6H_{10}O_5];$
15	Aspalathin	15.186	$C_{21}H_{24}O_{11}$	451.1242	[M-H]	-0.9	$245.0805[M-H-C_8H_{14}O_6];$
							1/9.0364[M-H-C ₁₁ H ₁₂ O ₅]
	6-O-Galloyl-						$481.2304[M-H-CH_2O-H_2O]^-;$
16	desbenzoypae	15.800	$C_{23}H_{28}O_{14}$	527.1397	[M-H] ⁻	-1.7	$313.0568[M-H-C_9H_{10}O_6];$
	oniflorin						$2/1.04/4[M-H-C_9H_{10}O_6-C_2H_2O]^-;$
							$169.0144[M-H-C_{16}H_{22}O_9]^{-1}$
17	Catechin	16.533	$C_{15}H_{14}O_{6}$	289.0712	[M-H] ⁻	-1.9	$245.0812[M-H-CO_2]^{-};$
			•				$203.0/01[M-H-H_2O-C_3O_2]^-;$

No.	Identification	RT	Formula	Found at	ion	ppm	MS/MS Fragmentation ions
		(min)		Mass			
18	Oxypaeoniflor in	16.819	C ₂₃ H ₂₈ O ₁₂	495.1500	[M-H] ⁻	-0.1	179.0341[M-H-C ₆ H ₆ O ₂] ⁻ ; 151.0392[M-H-C ₆ H ₆ O ₂ -CO ₂] ⁻ ; 137.0235[M-C ₈ H ₈ O ₃] ⁻ 465.1398[M-H-CH ₂ O] ⁻ ; 333.0988[M-H-Glc] ⁻ ; 195.0662[M-H-Glc-C ₇ H ₆ O ₃] ⁻ ; 177.0556[M-H-Glc-C ₇ H ₆ O ₃ -H ₂ O] ⁻ ; 165.0560[M-H-Glc-C ₇ H ₆ O ₃ -CH ₂ O] ⁻ ; 137.0241[M-H-Glc-C ₇ H ₆ O ₃ -CH ₂ O-C ₂ H ₄] ⁻
19	acid	16.935	$C_{16}H_{18}O_9$	353.0875	$[M-H]^-$	-1.4	191.0556[M-H-C ₉ H ₆ O ₃] ⁻
20	Caffeic acid	17.923	$C_9H_8O_4$	179.0347	[M-H] [_]	-1.5	135.0446[M-H-CO ₂] [−] ; 117.0335[M-H-CO ₂ -H ₂ O] [−] 415.1050[M+H-H ₂ O] ⁺ ; 385.0894[M+H-H ₂ O-CH ₂ O] ⁺ ;
21	eside isomer	18.147	$C_{21}H_{20}O_{10}$	433.1139	[M+H] ⁺	2.1	367.0827[M+H-2H ₂ O-CH ₂ O] ⁺ ; 355.0828[M+H-H ₂ O-C ₂ H ₄ O ₂] ⁺ ; 235.0244[M+H-H ₂ O-C ₂ H ₄ O ₂ -C ₈ H ₈ O] ⁺ 577.1584[M+H-H ₂ O] ⁺ ;
22	Safflor yellow A	18.174	$C_{27}H_{30}O_{15}$	595.1673	$[M+H]^+$	2.6	433.1137[M+H-C ₆ H ₁₀ O ₅] ⁺ ; 147.0442[M+H-C ₆ H ₁₀ O ₅ -C ₁₂ H ₁₄ O ₈] ⁺ 451.1218[M+H-C ₉ H ₆ O ₃] ⁺ ;
23	Carthamidin/is ocarthamidin- 2glu/gal	18.201	$C_{27}H_{32}O_{16}$	613.1760	[M+H] ⁺	-0.5	331.0801[M+H-C ₇ H ₁₀ O ₅ -C ₆ H ₄ O ₂] ⁺ ; 289.0702[M+H-C ₇ H ₁₀ O ₅ -C ₆ H ₄ O ₂ - C ₂ H ₂ O] ⁺ 491.1176[M-H-C ₄ H ₈ O ₄] ⁻ ;
24	Hydroxysafor yellow A	18.220	C ₂₇ H ₃₂ O ₁₆	611.1608	[M-H] [−]	-1.6	473.1076[M-H-C ₄ H ₈ O ₄ -H ₂ O] ⁻ ; 421.1130[M-H-C ₄ H ₈ O ₄ -C ₂ H ₂ O-CO] ⁻ ; 403.1021[M-H-C ₆ H ₁₀ O ₅ -H ₂ O-CO] ⁻ ; 353.0654[M-H-2C ₄ H ₈ O ₄ -H ₂ O] ⁻ ; 325.0708[M-H-2C ₄ H ₈ O ₄ -H ₂ O-CO] ⁻ ; 295.0611[M-H-C ₄ H ₈ O ₄ -C2H ₂ O-CO-C ₃ H ₆ O ₃ -2H ₂ O] ⁻ ; 283.0612[M-H-2C ₄ H ₈ O ₄ -C ₂ H ₂ O-CO-H ₂ O] ⁻
25	Carthamidin/is ocarthamidin- glu/gal isomer 4-(B-D-	18.248	$C_{21}H_{22}O_{11}$	451.1239	[M+H] ⁺	0.8	289.0706[M+H-C ₉ H ₆ O ₃] ⁺ ; 211.0232[M+H-C ₈ H ₅ O ₃ -H ₂ O-CO- CH ₃ OH] ⁺
26	Glucopyranos yloxy)-3- hydroxybenzy	19.395	C ₂₀ H ₂₂ O ₁₁	437.1084	[M-H] ⁻	-1.2	299.0502[M-H-C ₇ H ₆ O ₃] ⁻ ; 178.9982[M-H-C ₇ H ₆ O ₃ -C ₄ H ₉ O ₄] ⁻

No.	Identification	RT	Formula	Found at	ion	ррт	MS/MS Fragmentation ions
		(min)		Mass			
	1-3,4- dihydroxyben zoate						
27	Paeonol	20.395	$C_9H_{10}O_3$	167.0706	[M+H] ⁺	1.9	149.0583[M+H-H ₂ O] ⁺ ; 121.0645[M+H-H ₂ O-CO] ⁺ 479.1549[M-H] ⁻ ;
28	Albiflorin	21.714	C ₂₃ H ₂₈ O ₁₁	525.1604	[M+HCOO] ⁻	-1.9	357.1171[M-H-C ₆ H ₅ COOH] [−] ; 121.0289[M-H-C ₁₆ H ₂₁ O ₉] [−] 611.1951[M-H] [−] ;
29	Isomaltopaeon iflorin	22.012	$C_{29}H_{38}O_{16}$	687.2133	[M-HCOO] ⁻	-1.3	593.1876[M-H-CH ₂ O-H ₂ O] ⁻ ; 283.0823[M-H-C ₁₂ H ₂₀ O ₁₁ -H ₂ O] ⁻ ; 121.0288[M-H-C ₂₂ H ₃₂ O ₁₄] ⁻ 287.0532[M-H-C ₄ H ₈ O ₄] ⁻ ;
30	Khelloside	22.376	$C_{19}H_{20}O_{10}$	407.0976	[M-H] ⁻	-1.9	187.0392[M-H-C ₈ H ₁₂ O ₆] ⁻ ; 119.0495[M-H-C ₁₅ H ₁₂ O ₆] ⁻ 151.0755[M+H-2H ₂ O-C ₇ H ₁₁ O ₂ -C ₈ H ₅ O ₃] ⁺ ; 123.0802[M+H-2H ₂ O-C ₇ H ₁₁ O ₂ -C ₈ H ₅ O ₃ -
31	Lactiflorin	23.571	$C_{23}H_{26}O_{10}$	463.1615	[M+H] ⁺	3.6	CO] ⁺ ; $105.0692[M+H-3H_2O-C_7H_{11}O_2-C_8H_5O_3-CO]^+$ $479.1540[M-H]^-;$ $449.1429[M-H-CH_2O]^-;$
32	Paeoniflorin	23.620	$C_{23}H_{28}O_{11}$	525.1600	[M+HCOO] [_]	-2.6	327.1073[M-H-CH2O-C6H5COOH]-; 165.0552[M-H-C ₁₅ H ₂₁ O ₇] ⁻ ; 121.0284[M-H-C ₁₆ H ₂₁ O ₉] ⁻
33	Ferulic acid	25.805	$C_{10}H_{10}O_4$	195.0654	$[M+H]^+$	1.2	$177.0547[M+H-H_2O]^+;$ 135.0475[M+H-CH ₂ -CO-H ₂ O] ⁺
34	Rutin isomer	26.208	$C_{27}H_{30}O_{16}$	611.1620	$[M+H]^+$	2.1	$303.0508[M+H-C_{12}H_{20}O_9]^+;$ 287.0550[M+H-C_{12}H_{20}O_{10}]^+
35	Luteolin	26.255	$C_{15}H_{10}O_{6}$	287.0551	$[M+H]^{+}$	0.4	153.0179[M+H-C ₈ H ₆ O ₂] ⁺ ; 135.0437[M+H-C ₈ H ₆ O ₂ -H ₂ O] ⁺
36	Rutin	27.776	$C_{27}H_{30}O_{16}$	611.1619	[M+H] ⁺	2.1	$303.0495[M+H-C_{12}H_{20}O_9]^+;$ $153.0187[M+H-C_{20}H_{26}O_5]^+$ $479.1542[M-H]^-;$
37	Isopaeoniflori n	28.596	C ₂₃ H ₂₈ O ₁₁	525.1603	[M+HCOO] [_]	-1.9	449.1464[M-H-CH ₂ O] ⁻ ; 327.1076 [M-H-CH ₂ O-C ₆ H ₅ COOH] ⁻ ; 165.0572[M-H-C ₁₅ H ₂₁ O ₇] ⁻ ; 121.0295[M-H-C ₁₆ H ₂₁ O ₉] ⁻ 202.0501[M-H-C H = 0 \pm
38	Hyperin	28.764	$C_{21}H_{20}O_{12}$	465.1041	$[M+H]^+$	3.0	$303.0501[M+H-C_6H_{10}O_5]^+;$ 153.0198[M+H-C_6H_{10}O_5-C_7H_2O_4]^+
39	Quercetin	28.827	$C_{15}H_{10}O_{7}$	303.0506	$[M+H]^+$	2.3	285.0405[M+H-H ₂ O] ⁺ ; 257.0481[M+H-H ₂ O-CO] ⁺ ;

No.	Identification	RT (min)	Formula	Found at Mass	ion	ppm	MS/MS Fragmentation ions
							229.0512[M+H-H ₂ O-2CO] ⁺ ; 201.0631[M+H-H ₂ O-3CO] ⁺ ; 165.0190[M+H-CO-C ₂ H ₂ O ₂] ⁺
40	Isoquercitrin	28.883	$C_{21}H_{20}O_{12}$	463.0876	[M-H] ⁻	-1.3	$301.0349[M-H-C_6H_{10}O_5]^-;$ 255.0302[M-H-C_6H_{10}O_5-CH_2O_2]^-;
	Gellevingeoni						$151.0036[M-H-C_6H_{10}O_5-C_7H_6O_2-CO]^-$ 613.1651[M-H-H ₂ O] ⁻ ; 491.1197[M-H-H ₂ O-C ₇ H ₆ O ₂] ⁻ ;
41	florin isomer	30.044	$C_{30}H_{32}O_{15}$	631.1654	[M-H] ⁻	-2.3	313.0559[M-H-H ₂ O-C ₇ H ₆ O ₂ -C ₁₀ H ₁₀ O ₃] ⁻ ; 169.0140[M-H-H ₂ O-C ₇ H ₆ O ₂ -C ₁₀ H ₁₀ O ₃ - C ₆ H ₆ O ₄] ⁻
42	Kaempferol	31.792	$C_{15}H_{10}O_{6}$	287.0552	$[M+H]^{+}$	0.7	$153.0184[M+H-C_8H_6O_2]^+$
43	Kaempferol-3- O-rutinoside	31.857	$C_{27}H_{30}O_{15}$	593.1501	[M-H] ⁻	-1.8	$285.0404[M\text{-}\text{H-}\text{C}_6\text{H}_{10}\text{O}_5\text{-}\text{C}_6\text{H}_{10}\text{O}_4]^-$
44	ucose	32.359	$C_{41}H_{32}O_{26}$	939.1094	[M-H] ⁻	-1.7	769.0825[M-H-C ₇ H ₆ O ₅] ⁻
45	Isochlorogenic	32.462	$C_{25}H_{24}O_{12}$	515.1191	[M-H] ⁻	-0.8	353.0867[M-H-C ₉ H ₆ O ₃] [−] ; 191.0560[M-H-2C ₉ H ₆ O ₃] [−] ;
46	Galuteolin	32.813	C ₂₁ H ₂₀ O ₁₁	447.0931	[M-H] ⁻	-0.4	$173.0450[M-H-2C_9H_6O_3-H_2O]^-$ 285.0404[M-H-C_6H_10O_5]^;
							$255.0289[M-H-C_6H_{10}O_5-CH_2O]^-$ 521.1677[M-H] ⁻ ;
47	Acetoxypaeon iflorin	33.383	$C_{25}H_{30}O_{12}$	567.1710	[M+HCOO]-	-1.6	$491.1547[M-H-CH_{2}O];$ $369.1208[M-H-CH_{2}O-C_{7}H_{6}O_{2}]^{-};$ $165.0553[M-H-CH_{2}O-C_{7}H_{6}O_{2}-C_{8}H_{12}O_{6}]^{-};$ $121.0293[M-H-C_{17}H_{14}O_{6}-C_{3}H_{2}O_{2}]^{-}$
48	Rosmarinic acid	36.426	$C_{18}H_{16}O_8$	359.0765	[M-H] ⁻	-2	$197.0448[M-H-C_9H_6O_3]^-;$ $179.0343[M-H-C_9H_8O_4]^-;$ $161.0237[M-H-C_9H_{10}O_5]^-$
49	Senkyunolide F isomer	36.456	$C_{12}H_{14}O_3$	207.1014	$[M+H]^+$	-1.0	189.0907[M+H-H ₂ O] ⁺ ; 161.0960[M+H-H ₂ O-CO] ⁺
50	Senkyunolide I/H	36.493	$C_{12}H_{16}O_4$	225.1124	$[M+H]^+$	1.3	207.1020[M+H-H ₂ O] ⁺ ; 189.0901[M+H-2H ₂ O] ⁺ ; 165.0917[M+H-2H ₂ O_CO] ⁺
51	Salvianolic acid A	37.958	$C_{26}H_{22}O_{10}$	493.1135	[M-H] ⁻	-1.1	$295.0607[M-H-C_9H_{10}O_5]^-;$ $185.0237[M-H-C_9H_{10}O_5-C_6H_6O_2]^-;$ $179.0348[M-H-C_{17}H_{14}O_6]^-;$
52	Bis-PEG8- acid	39.699	$C_{20}H_{38}O_{12}$	469.2286	[M-H] [_]	-0.9	$109.0299[M-H-C_{17}H_{14}O_6-C_3H_2O_2]^-$ 423.2221[M-H-CH_2O_2]^; 277.1648[M-H-CH_2O_2-C_cH_1:O_4]^-
53	Litseaefolosid e C	39.994	$C_{30}H_{30}O_{14}$	613.1548	[M-H] ⁻	-2.5	$361.1080[M-H-C_{12}H_{12}O_6]^-;$ 241.0494[M-H-C_{16}H_{20}O_{10}]^-

No.	Identification	RT	Formula	Found at	ion	ppm	MS/MS Fragmentation ions
		(min)		Mass			
							$477.1388[M-H-C_7H_6O_2]^-;$
							447.1293[M-H-C ₇ H ₆ O ₂ -CH ₂ O] [−] ;
54	Mudanpioside	40.589	C ₃₀ H ₃₂ O ₁₃	599.1757	[M-H] ⁻	-2.2	$281.0654[M-H-C_{17}H_{18}O_6]^-;$
	С						$239.0560[M-H-C_{19}H_{20}O_7]^-;$
							$137.0231[M-H-C_{23}H_{26}O_{10}]^-;$
	~						$121.0289[M-H-C_{23}H_{26}O_{11}]^{-1}$
55	Salvianolic	41.006	C ₃₆ H ₃₀ O ₁₆	717.1443	[M-H] ⁻	-2.5	$519.0919[M-H-C_9H_{10}O_5]^-;$
	acid B		50 50 10				$321.0404[M-H-2C_9H_{10}O_5]^-$
	4-Allyl-2-						
	methoxypheny						
	1 6-O-β-D-	42 200	C II O	407 1010		2.2	369.1645[M-H-C ₄ H ₆ O ₄] ⁻ ;
56	glucopyranosy	42.209	$C_{22}H_{32}O_{12}$	487.1810	[M-H]	-2.2	$173.0452[M-H-C_{15}H_{22}O_7]^{-1}$
	I-р-D-						
	giucopyranosi						
	Corrent 6.0						
	defaily 0-0-						
	arabinopyrano						315 1797[M-H-C-H ₂ O ₄] ⁻ :
57	svl- ß-D-	44.011	$C_{21}H_{36}O_{10}$	447.2229	[M-H] ⁻	-1.5	$161.0443[M-H-C_{12}H_{22}O_{2}]^{-1}$
	glucopyranosi						101.010[0111 015112605]
	de						
	Salvianolic						311.0563[M-H-C₀H∘O₄]⁻:
58	acid C	47.722	$C_{26}H_{20}O_{10}$	491.0978	[M-H] ⁻	-1.2	135.0448[M-H-C ₁₈ H ₁₂ O ₈] ⁻
59	Ethyl ferulate	48.341	$C_{12}H_{14}O_4$	221.0817	[M-H] [_]	-1.1	177.0915[M-H-C ₂ H ₄ O] ⁻
	-						583.1807[M-H] ⁻ ;
							553.1699[M-H-CH ₂ O] ⁻ ;
60	Benzoylpaeon	50 115	a u o	(00 10 ()		1.0	535.1604[M-H-CH ₂ O-H ₂ O] ⁻ ;
60	iflorin	50.465	$C_{30}H_{32}O_{12}$	629.1864	[M+HCOO] ⁻	-1.9	431.1345[M-H-CH ₂ O-C ₇ H ₆ O ₂] ⁻ ;
							121.0289[M-H-C ₂₃ H ₂₆ O ₁₀] ⁻ ;
							77.0396[M-H-C ₂₂ H ₂₆ O ₁₀ -CO] ⁻
							161.0949[M+H-CO] ⁺ ;
(1	Butylidenepht	55 001	CILO	100 0000		1.0	147.0442[M+H-C ₃ H ₆] ⁺ ;
01	halide isomer	55.081	$C_{12}H_{12}O_2$	189.0908	[M+H]	-1.0	143.0862[M+H-H ₂ O-CO] ⁺ ;
							133.0289[M+H-C ₄ H ₈] ⁺

Figure S20. The inhibitory activity of protocatechualdehyde (A), chlorogenic acid (B), hydroxysafflower yellow A (C), caffeic acid (D), isoquercetin (E) and pentagalloylglucose (F) on SARS-CoV-2 M^{pro}. Data represent means ± SD (n=3).

Figure S21. Typical HPLC chromatograms of 6 compounds and Xuebijing injection.

1 able 54. 1h	e linear	regression	equation,	linear range,	, LOD	and LOQ	of the six

compounds.									
Compounds	Regression equation	Linear range (µg/mL)	R ²	LOD (µg/mL)	LOQ (µg/mL)				
Protocatechualdehyde	y=0.73699x+0.45696	0.095-95	0.9991	0.03	0.10				
Chlorogenic acid	y=0.23438x+0.4459	0.34-340	0.9992	0.11	0.34				
Hydroxysafflor yellow A	y=0.04143x+0.28217	1.22-1220	0.9991	0.41	1.22				
Caffeic acid	y=0.36148x+0.66671	0.31-310	0.9990	0.10	0.31				
Isoquercitrin	y=0.11826x+0.09762	0.25-125	0.9990	0.08	0.25				
Pentagalloylglucose	y=0.3856x+0.0579	0.27-270	0.9999	0.09	0.27				

Table S5. The intra-day, inter-day precision and stability of six compounds.

Compounds	Concentration	Intra-day	Intra-day			Stability	
Compounds	(µg/mL)	RSD (%)	Accuracy (%)	RSD (%)	Accuracy (%)	RSD (%)	Accuracy (%)
	47.5	0.31	102.77	1.53	103.70	0.28	102.97
Protocatechualdehyde	0.76	0.32	100.93	0.51	100.75	0.23	100.85
	0.19	0.68	102.65	1.36	101.86	1.25	101.31
	170	0.65	103.36	0.63	103.36	1.04	103.62
Chlorogenic acid	2.72	0.19	100.42	0.42	100.59	0.19	100.42
	0.68	0.48	99.12	1.50	99.32	1.37	98.15
Hydroxysafflor yellow A	610	0.48	102.77	0.37	102.71	0.27	102.47

	9.76	0.58	99.53	0.91	98.87	0.60	99.59
	2.44	1.76	104.33	1.71	102.13	2.47	99.72
	155	0.56	103.93	0.45	103.67	1.20	103.89
Caffeic acid	2.48	0.26	100.93	1.13	100.67	0.26	100.93
	0.62	0.77	100.88	2.16	99.73	1.12	98.10
	62.5	0.41	103.10	0.44	103.23	0.81	102.40
Isoquercitrin	1.00	1.38	101.21	1.88	103.13	1.38	101.31
	0.25	1.89	98.72	0.64	98.27	1.45	97.48
	143.5	0.19	101.51	0.74	101.13	0.38	100.32
Pentagalloylglucose	2.16	0.77	104.85	0.31	104.77	1.03	104.13
	0.54	1.80	98.48	1.75	98.32	1.71	98.98

Table S6. The reproducibility of six compounds of Xuebijing injection.

Compounds	Concentration (µg/mL)	RSD (%)
Protocatechualdehyde	11.06	0.03
Chlorogenic acid	2.67	1.91
Hydroxysafflor yellow A	430.82	0.03
Caffeic acid	4.89	0.15
Isoquercitrin	1.24	0.82
Pentagalloylglucose	2.18	0.26

Table S7. The recovery of six compounds in fingerprints of Xuebijing injection.

Compounds	Original	Spiked	Found	Average recovery RSD (%)	
	(µg)	(µg)	(µg)	(%)	1.22 (73)
		8.85	20.10	102.21	1.73
Protocatechualdehyde	11.06	11.06	21.87	97.78	0.24
		13.27	24.10	98.26	0.92
Chlorogenic acid	2.67	2.14	4.85	101.87	1.71
		2.67	5.34	100.30	0.66
		3.21	5.95	102.15	2.63

Hydroxysafflor yellow A	430.82	344.66	765.19	97.01	1.41
		430.82	854.92	98.44	0.70
		516.99	934.78	97.48	0.72
Caffeic acid	4.89	3.91	8.80	99.95	0.43
		4.89	9.93	103.07	0.74
		5.87	10.66	98.88	0.21
Isoquercitrin	1.24	0.99	2.23	100.43	0.48
		1.24	2.45	97.66	1.54
		1.49	2.69	97.46	1.69
Pentagalloylglucose	2.18	1.75	3.99	103.03	0.20
		2.18	4.34	98.71	0.71
		2.62	4.88	101.71	0.75