Supplementary Information

Transient Theory for Scanning Electrochemical Microscopy of Biological

Membrane Transport: Uncovering Permeant–Membrane Interactions

Siao-Han Huang, and Shigeru Amemiya*

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania,

15260, United States

* To whom correspondence should be addressed. E-mail: amemiya@pitt.edu. Fax: 412-624-8611.

Contents:

- 1. Transport model
- 2. Finite element simulation

Transport Model. We derived a Langmuir-type model for the reversible membrane transport of molecules and ions by modifying the Michaelis-Menten model of unidirectional membrane transport. With the Michaelis-Menten model, a permeant associated with a membrane component reversibly in the first step but is transported uni-directionally in the second step from the top phase (w_1 in Fig. 1) to the bottom phase (w_2) as given by

$$P(w_1) + E(mem) \Rightarrow PE(mem) \rightarrow E(mem) + P(w_2)$$
(S-1)

The respective rates are given by

$$v_{1,1\to2} = k_{\rm on}c_{1,\rm S}(\Gamma_{\rm S} - \Gamma_{\rm PE}) - k_{\rm off}\Gamma_{\rm PE}$$
(S-2)

$$v_{2,1\to2} = k_{\text{cat}} \Gamma_{\text{PE}} \tag{S-3}$$

where k_{on} , k_{off} , and k_{cat} are the corresponding rate constants. Since $v_{1,MM} = v_{2,MM}$ under steady states, the stead-state rate, $v_{ss,1\rightarrow 2}$, is given by the familiar Michaelis–Menten expression as

$$v_{\rm SS, 1 \to 2} = \frac{V_{\rm max} c_{1,\rm S}}{c_{1,\rm S} + K_{\rm M}}$$
(S-4)

with

$$V_{\rm max} = k_{\rm cat} \Gamma_{\rm S} \tag{S-5}$$

$$K_{\rm M} = \frac{k_{\rm off} + k_{\rm cat}}{k_{\rm on}} \tag{S-6}$$

Eqs S-5 and S-6 indicate that V_{max} and K_{M} are the convolutions of a few parameters, which can not be resolved under steady states. In addition, we also consider the reverse direction of membrane transport from the bottom phase (w₂ in Fig. 1) to the top phase (w₁) as

$$P(w_2) + E(mem) \Rightarrow P-E(mem) \rightarrow E(mem) + P(w_1)$$
(S-7)

Both directions are considered to modify eqs S-2 and S-3 as

$$v_{1,\text{MM}} = k_{\text{on}}c_{1,\text{S}}(\Gamma_{\text{S}} - \Gamma_{\text{PE}}) - k_{\text{off}}\Gamma_{\text{PE}} - k_{\text{cat}}\Gamma_{\text{PE}}$$
(S-8)

$$v_{2,\text{MM}} = k_{\text{cat}} \Gamma_{\text{PE}} - k_{\text{on}} c_{2,\text{S}} (\Gamma_{\text{S}} - \Gamma_{\text{PE}}) + k_{\text{off}} \Gamma_{\text{PE}}$$
(S-9)

With $k_{ass} = k_{on}$ and $k_{diss} = k_{off} + k_{cat}$, eqs S-8 and S-9 are equivalent to eqs 2 and 3 of the Langmuir-type model.

Finite Element Simulation. The current response of a disk-shaped tip in the SECM configuration was simulated by solving an axisymmetric (2D) diffusion problem as defined in a cylindrical coordinate (Fig. 2). We employed COMSOL Multiphysics (version 6.2, COMSOL, Inc., Burlington, MA) to solve the 2D SECM diffusion problem in dimensionless form. The details of the simulation are summarized in the report generated by COMSOL (see below). Study 1 simulates the steady-state tip current at various tip–membrane distances to yield an approach curve. Study 2 simulates the transient tipp current at various times to yield a chronoamperogram at a fixed tip–membrane distance.

The dimensionless equations are defined as follows. Eqs 11 and 12 for the diffusion of permeants were defined by dimensionless parameters as

$$\frac{\partial C_1}{\partial \tau} = \frac{\partial^2 C_1}{\partial R^2} + \frac{1}{R} \frac{\partial C_1}{\partial R} + \frac{\partial^2 C_1}{\partial Z^2}$$
(S-10)

$$\frac{\partial C_2}{\partial \tau} = \frac{\partial^2 C_2}{\partial R^2} + \frac{1}{R} \frac{\partial C_2}{\partial R} + \frac{\partial^2 C_2}{\partial Z^2}$$
(S-11)

where

$$C_1 = \frac{c_1}{c_0}$$
(S-12)

$$C_2 = \frac{c_2}{c_0}$$
 (S-13)

$$\tau = \frac{Dt}{a^2} \tag{S-14}$$

$$R = \frac{r}{a} \tag{S-15}$$

$$Z = \frac{z}{a}$$
(S-16)

In addition, geometric parameters were defined by using dimensionless parameters as

$$L = \frac{d}{a} \tag{S-17}$$

This problem was solved numerically to calculate the normalized tip current, $i_T/i_{T,\infty}$, which was set to 1 at L = 25.

Boundary conditions for the permeant at the membrane (eqs 13–15) were also defined by using dimensionless parameters as

$$\frac{\partial C_1}{\partial Z} = \kappa \lambda \Big[\rho C_1 \Big(1 - \theta_{\rm PE} \Big) - \theta_{\rm PE} \Big]$$
(S-18)

$$\frac{\partial C_2}{\partial Z} = \kappa \lambda \Big[\rho C_2 \Big(1 - \theta_{\rm PE} \Big) - \theta_{\rm PE} \Big]$$
(S-19)

$$\frac{\partial \theta_{\rm PE}}{\partial \tau} = \lambda \left[\rho \left(C_1 + C_2 \right) \left(1 - \theta_{\rm PE} \right) - 2\theta_{\rm PE} \right]$$
(S-20)

where λ , ρ , and κ are given by eqs 17–19, respectively.

Report date

Apr 11, 2024, 12:51:57 PM

Contents

- 1. <u>Global Definitions</u>
- 1.1. <u>Parameters</u>
- 2. <u>Component 1</u>
- 2.1. <u>Definitions</u>
- 2.2. <u>Geometry 1</u>
- 2.3. <u>Transport of Diluted Species</u>
- 2.4. <u>Transport of Diluted Species 2</u>
- 2.5. <u>General Form Boundary PDE</u>
- 2.6. <u>Mesh 1</u>
- 3. <u>Study 1</u>
- 3.1. <u>Parametric Sweep</u>
- 3.2. <u>Stationary</u>
- 4. <u>Study 2</u>
- 4.1. <u>Time Dependent</u>
- 5. <u>Results</u>
- 5.1. Data Sets
- 5.2. <u>Derived Values</u>
- 5.3. <u>Tables</u>
- 5.4. <u>Plot Groups</u>

1. Global Definitions

Date Apr 11, 2024, 11:01:01 AM

Global settings

Name	Transient SECM of Membrane Transport.mph	
Path	E:\Transient SECM of Membrane Transport.mp	
Version	COMSOL Multiphysics 6.2 (Build: 339)	

Used products

COMSOL Multiphysics

Computer information

CPU	Intel64 Family 6 Model 158 Stepping 13, 8 cores, 15.79 GB RAM
Operating system	Windows 10

1.1. Parameters

Parameters 1

Name Expression	Value	Description

lamda	0.1 [m/s]	0.1 m/s	normalized rate constant
rho	1	1	
kappa	10	10	
L	0.1 [m]	0.1 m	normalized tip-membrane distance
RG	1.4[m]	1.4 m	normalized tip outer radius
c 0	1 [mol/m^3]	1 mol/m ³	
Dg	0 [m^2/s]	0 m²/s	diffusion coefficient of permeant on the membrane

2. Component 1

 Settings

 Description
 Value

 Avoid inverted elements by curving interior domain elements
 Off

2.1. Definitions

2.1.1. Variables

Variables 1

Selection

Geometric entity level Entire model

Name	Expression	Unit	Description
V1	kappa*lamda*(rho*c1*(1 - u) - c0*u)	$mol^2/(m^4 \cdot s)$	
V2	kappa*lamda*(rho*c2*(1 - u) - c0*u)	$mol^2/(m^4 \cdot s)$	

2.1.2. Probes

Boundary Probe 1

Probe type Boundary probe

Selection			
Geometric entity level	Boundary		
Selection	Geometry geom1: Dimension 1: Boundary 5		

2.1.3. Nonlocal Couplings

Integration 1

Coupling type	Integration
Operator name	intop1

Selection

Geometric entity level	Boundary
Selection	Geometry geom1: Dimension 1: Boundary 5

2.1.4. Coordinate Systems

Boundary System 1

Coordinate system type	Boundary system
Tag	sys1
Coordinate names	

First	Second	Third
t1	to	n

2.2. Geometry 1

Units Length unit m Angular unit deg

2.3. Transport of Diluted Species

Transport of Diluted Species

Equations

$$\nabla \cdot \mathbf{J}_i + \mathbf{u} \cdot \nabla c_i = R_i$$

$$\mathbf{J}_i = -D_i \nabla c_i$$

Features			
Transport Properties 1	Domain		
Axial Symmetry 1	Boundary		
No Flux 1	Boundary		
Initial Values 1	Domain		
Concentration 1	Boundary		
Concentration 2	Boundary		
Flux 1	Boundary		

2.4. Transport of Diluted Species 2

Transport of Diluted Species 2

Equations

$$\nabla \cdot \mathbf{J}_i + \mathbf{u} \cdot \nabla c_i = R_i$$

$$\mathbf{J}_i = -D_i \nabla c_i$$

Features	
Transport Properties 1	Domain
Axial Symmetry 1	Boundary
No Flux 1	Boundary
Initial Values 1	Domain
Concentration 1	Boundary

2.5. General Form Boundary PDE

General Form Boundary PDE

Equations

 $\nabla_{T} \cdot \Gamma = f$

$$\nabla_{T} = (\mathbf{I} - \mathbf{n}\mathbf{n}^{T})[\frac{\partial}{\partial r}, \frac{\partial}{\partial z}]$$

Features

Name	Level
General Form PDE 1	Boundary
Initial Values 1	Boundary

2.6. Mesh 1

3. Study 1

Computation information

3.1. Parametric Sweep

Parameter nam	e Parameter value list	Parameter unit	
L	range(10,-0.1,0.1)	m	
Stu	dy settings		
Description	Value]	
Sweep type Specified combinations			
Parameter name	L		
Unit]		
	Parame	eters	
Parameter name Parameter value			

Parameter name	Parameter value list	Parameter unit
L (normalized tip-membrane distance)	range(10,-0.1,0.1)	m

3.2. Stationary

Study settings

Description	value
Include geometric nonlinearity	Off

Physics and variables selection

Physics interface	Solve for	Equation form		
Transport of Diluted Species (tds)	On	Automatic (Stationary)		
Transport of Diluted Species 2 (tds2)	On	Automatic (Stationary)		
General Form Boundary PDE (gb) On Automatic (Stationary				
Store in output				

Interface	Output	Selection
Transport of Diluted Species (tds)	Physics controlled	
Transport of Diluted Species 2 (tds2)	Physics controlled	
General Form Boundary PDE (gb)	Physics controlled	

Mesh selection

ComponentMeshComponent 1Mesh 1

4. Study 2

Computation		
information		
Computation time	11	s

4.1. Time Dependent

Times	Unit
range(0,0.1,10)	s

Study settings

Description	Value
Include geometric nonlinearity	Off

Study settings

Description	Value		
Output times	$\{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10\}$		

Physics	and	variables	selection
		1011010100	

Physics interface	Solve for	Equation form
Transport of Diluted Species (tds)	On	Automatic (Time dependent)
Transport of Diluted Species 2 (tds2)	On	Automatic (Time dependent)
General Form Boundary PDE (gb)	On	Automatic (Time domain)

Store in outputInterfaceOutputSelectionTransport of Diluted Species (tds)Physics controlledTransport of Diluted Species 2 (tds2)Physics controlledGeneral Form Boundary PDE (gb)Physics controlled

Mesh selection			
Component	Mesh		
Component 1	Mesh 1		

5. Results

5.1. Data Sets

5.1.1. Study 1/Solution 1

Solution			
Description Value			
Solution	Solution 1 (sol1)		
Component	Component 1 (comp1)		

5.1.2. Revolution 2D

DataDescriptionValueDatasetStudy 1/Solution 1 (sol1)Axis dataDescriptionValueAxis dataDescriptionValueAxis entry methodTwo pointsPoints{{0,0}, {0,1}}

Revolution layers

Description	Value
Start angle	-90
Revolution angle	225

Dataset: Revolution 2D

5.1.3. Probe Solution 2

Solution			
Description Value			
Solution	Solution 173 (sol173)		
Component	Component 1 (comp1)		

5.1.4. Boundary Probe 1

5.1.5. Study 1/Parametric Solutions 1

SolutionDescriptionValueSolutionParametric Solutions 1 (sol2)ComponentComponent 1 (comp1)

5.1.6. Revolution 2D 2

	Data
Description	Value

Dataset <u>Stud</u>	Study 1/Parametric Solutions 1 (sol2)			
Axis data				
Description	Value			

Axis entry method Two points				
Points	$\{\{0,0\},\{0,1\}\}$			
Revolution layers				
Description	Value			

Description	varue
Start angle	-90
Revolution angle	225

5.1.7. Study 1/Parametric Solutions 2

Solution			
Description Value			
Solution	Parametric Solutions 2 (sol53)		
Component	Component 1 (comp1)		

5.1.8. Revolution 2D 3

Data				
Description	Value			
Dataset	Study 1/Parametric Solutions 2 (sol53)			
Axis data				
Descripti	on	Value		
Axis entry m	ethod	Two points		
Points		$\{\{0,0\},\{0,1\}\}$		
Revolutio	on laye	ers		
Descriptio	on V	Value		
Start angle	-	-90		
Revolution a	ngle 2	225		

5.1.9. Study 1/Parametric Solutions 3

Solution			
Description	Value		
Solution	Parametric Solutions 3 (sol72)		
Component	Component 1 (comp1)		

Dataset: Study 1/Parametric Solutions 3

5.1.10. Revolution 2D 4

Data				
Description	Value			
Dataset	Study 1/Parametric Solutions 3 (sol72)			
Axis data				
Descripti	on		Value	
Axis entry m	ethod	Two	points	
Points		{{0,	$0\}, \{0, 1\}\}$	
Revolution layers				
Descriptio	on V	alue		
Start angle		90		
Revolution a	ngle 2	225		

5.1.11. Study 2/Solution 173

Solution			
Description	on Value		
Solution	Solution 173 (sol173)		
Component	Component 1 (comp1)		

Dataset: Study 2/Solution 173

5.1.12. Revolution 2D 5

Revolution angle 225

Data				
Description	Value			
Dataset	Study 2/Solution 173 (sol173)			
Axis data				
Description			Value	
Axis entry method		Two	points	
Points		$\{\{0,0\},\{0,1\}\}$		
Revolution layers				
Descriptio	on V	Value		
Start angle	-	90		

Dataset: Revolution 2D 5

5.2. Derived Values

5.2.1. Boundary Probe 1

5.3. Tables

5.3.1. Probe Table 1

Time (s)	intop1(tds.ndflux_c1) (mol/s), Boundary Probe 1
0	412.58
2.1012E-5	401.02
2.2024E-5	390.04
2.4048E-5	369.74
2.8096E-5	337.33
3.6192E-5	291.84
4.4289E-5	262.49
5.2385E-5	241.59
6.0481E-5	225.46
7.6674E-5	200.45
9.2866E-5	182.66
1.0906E-4	169.22
1.2525E-4	158.55
1.5764E-4	141.77
1.9002E-4	129.58
2.2241E-4	120.26
2.5479E-4	112.81
3.1956E-4	101.08
3.8433E-4	92.511
4.491E-4	85.941
5.1387E-4	80.679
6.4341E-4	72.382
7.7295E-4	66.318
9.0249E-4	61.664
0.001032	57.935
0.0011616	54.844
0.0014206	49.805
0.0016797	45.917
0.0019388	42.754
0.0021979	40.054
0.002716	35.416
0.0032342	31.564
0.0037524	28.256
0.0047887	22.767

0.005825	18.554
0.0068613	15.323
0.0078976	12.845
0.0089339	10.941
0.0099703	9.4748
0.011007	8.3406
0.012043	7.4594
0.013079	6.771
0.015152	5.7652
0.017224	5.1286
0.019297	4.7207
0.02137	4.4503
0.023442	4.262
0.025515	4.1234
0.02966	3.9171
0.033806	3.7764
0.042096	3.5737
0.050387	3.4419
0.058677	3.3472
0.066968	3.2747
0.075258	3.2174
0.091839	3.1297
0.10842	3.0682
0.125	3.0222
0.14158	2.9852
0.17474	2.9238
0.20791	2.8742
0.27423	2.7912
0.34056	2.7245
0.4732	2.6181
0.60585	2.5402
0.7385	2.4817
0.87115	2.4369
1.0038	2.402
1.2691	2.3502
1.5344	2.3162
1.7997	2.2931
2.065	2.2767
2.3303	2.2645
2.8609	2.2464

3.3915	2.2344
4.3915	2.2188
5.3915	2.2091
6.3915	2.2023
7.3915	2.1971
8.3915	2.1929
9.3915	2.1894
10.391	2.1864

5.3.2. Evaluation 2D

Interactive 2D values

X	y	Value
2.8929	-0.21973	0.93422
0.33462	0.091346	-0.0086338
0.34174	0.012952	-0.086873
0.14762	0.68869	0.19022
0.73637	0.36524	0.92672
0.48924	0.66689	0.82101
0.48924	0.67779	0.81734
0.54042	1.9754	0.024472
0.84368	0.1007	1.0062
0.33573	0.46712	0.95784

5.4. Plot Groups

5.4.1. Probe Plot Group 1

5.4.2. Concentration (tds)

Surface: Concentration (mol/m3) Streamline: Total flux

5.4.3. Concentration, 3D (tds)

5.4.4. Concentration (tds2)

Surface: Concentration (mol/m3) Streamline: Total flux

5.4.6. General Form Boundary PDE

Line: Dependent variable u (mol/m2)

Surface: Concentration (mol/m3) Streamline: Total flux

5.4.8. Concentration, 3D (tds) 1

Concentration (mol/m3)

5.4.9. Concentration (tds2) 1

Surface: Concentration (mol/m3) Streamline: Total flux

5.4.10. Concentration, 3D (tds2) 1

Concentration (mol/m3)

5.4.11. General Form Boundary PDE 1

Line: Dependent variable u (mol/m2)