### **Supporting Information**

### Mitochondria-targeted fluorescent probe for simultaneously imaging

### viscosity and sulfite in inflammation models

Zixiong Peng,<sup>#a</sup> Dan Zhang,<sup>#a</sup> Hang Yang,<sup>a</sup> Zhe Zhou,<sup>a</sup> Feiyi Wang,<sup>a</sup> Zhao Wang,<sup>\*b</sup> Jun Ren,<sup>\*a</sup> Erfei Wang<sup>\*a</sup>

<sup>a</sup> Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Hubei University, Wuhan 430062, P. R. China.

<sup>b</sup> Wuhan Business University, Wuhan 430056, P.R. China

<sup>#</sup> These authors contributed equally to this work.

\* Corresponding authors:

(E-mail address: wangzhao517@stu.hubu.edu.cn; renjun@hubu.edu.cn; efwang@hubu.edu.cn)

# Table of Content

| 1. General Information         | S1 |
|--------------------------------|----|
| General reagent information    | S1 |
| General analytical information | S1 |
| General optical measurement    | S1 |
| The Förster-Hoffmann equation  | S1 |
| Cell imaging                   | S1 |
| Zebrafish imaging              | S2 |
| Mice imaging                   | S2 |
| 2. Synthesis of probe ES       | S3 |
| 3. Supporting results          | S4 |

### **1. General Information**

#### **General reagent information**

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used as supplied without further purification.

#### General analytical information

Ultra-pure water was obtained from a water ultra-purification system. Silica gel (200-300 mesh) was used for flash column chromatography. Liquid nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV-400 NMR spectrometer. High-resolution mass spectra (HR-MS) were recorded on Thermo Scientific High-Resolution MS. UV-*vis* absorption spectra were obtained on a SHIMADZU UV-1800 spectrophotometer. Fluorescence measurements were performed with an Agilent Cary Eclipse Fluorescence spectrophotometer. The pH values were measured with a METTLER TOLEDO FiveEasy Plus pH meter. Laser confocal fluorescence imaging results were collected by Zeiss LSM 900. Fluorescence imaging experiments of mice were recorded by VISQUE In Vivo Smart-LF Imaging System.

#### **General optical measurement**

All spectra were measured in buffer solution (PBS/ glycerol = 2:8, v:v, 20 mM, pH = 7.4) at 37 °C. A stock solution of **ES** (5 mM) was prepared in DMSO and then diluted with PBS buffer solution to the desired concentration (10  $\mu$ M). Na<sub>2</sub>SO<sub>3</sub> was dissolved in ultra-pure water and other analytes were formulated with PBS buffer solution to the required concentration for fluorescence spectra. Optical tests were performed in quartz cuvettes (path length: 1.0 cm).

#### **The Förster-Hoffmann equation**

The relationship between the fluorescence emission intensity of the probe **ES** and the solvent viscosity could be formulated by the Förster-Hoffmann equation:

Where  $\eta$  is the viscosity, I is the emission intensity, C is a constant, and x is the sensitivity of the probe to viscosity.

#### Cell imaging

Response of **ES** to viscosity: HepG2 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37 °C under a humidified atmosphere containing 5% CO<sub>2</sub>.

For confocal imaging in Figure 4, (a) control cells; (b) cells were treated with **ES** (10  $\mu$ M) for 1 h at 37 °C; (c) cells were treated with **ES** (10  $\mu$ M) for 1 h at 25 °C; (d, e) cells were treated with Nys (20  $\mu$ M)/LPS (1  $\mu$ g/mL) for 20 min, sequentially incubated with **ES** (10  $\mu$ M) for another 1 h at 37 °C; (e-j) HepG2 cells were treated with LPS (1  $\mu$ g/mL) for 20 min, and sequentially incubated **ES** (10  $\mu$ M) for 1 h at 37 °C; finally cultured with different concentrations of SO<sub>3</sub><sup>2-</sup> (0-100  $\mu$ M) for 10 min. Fluorescence collected in red channel: 627-680 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 488$  nm, scale bars: 50  $\mu$ m.

Co-localization experiments in HeLa and HepG2 cells (Figures 3 and S9): cells were pretreated with Hoechst (1  $\mu$ M) for 20 min, then incubated with MitoTracker green or LysoTracker green (1  $\mu$ M) for another 20 min respectively, finally treated with **ES** (10  $\mu$ M) for 1 h. Fluorescence collected in blue channel: 450-480 nm, in green channel: 500-550 nm, red channel: 627-680 nm,  $\lambda_{ex} = 488$  nm.

#### Zebrafish imaging

These zebrafish pretreated with 1-phenyl-2-thiourea (PTU) were cultured in the embryonic medium for 3 to 7 days at 25 °C. For confocal imaging in Figure 5, (a) control; (b) zebrafish larvae were incubated with **ES** (10  $\mu$ M) for 1 h at 37 °C; (c) zebrafish larvae were pretreated at 10 °C for 20 min, and sequentially incubated with **ES** (10  $\mu$ M) for another 1 h at 10 °C; (d, e) zebrafish larvae were treated with Nys (20  $\mu$ M) /LPS (1  $\mu$ g/mL) for 20 min, and sequentially incubated with **ES** (10  $\mu$ M) for another 1 h at 37 °C; (e-j) zebrafish larvae were treated with LPS (1  $\mu$ g/mL) for 20 min, and sequentially incubated with **ES** (10  $\mu$ M) for another 1 h at 37 °C; (e-j) zebrafish larvae were treated with LPS (1  $\mu$ g/mL) for 20 min, sequentially incubated **ES** (10  $\mu$ M) for 1 h at 37 °C, finally cultured with different concentrations of SO<sub>3</sub><sup>2-</sup> (0-100  $\mu$ M) for 10 min. Fluorescence collected in red channel: 627-680 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 488$  nm.

#### Mice imaging

5-week-old nude mice average body weight of  $30 \pm 2$  g were purchased from Hengyisai Biotech Co. Inc. (Wuhan, China). A group of five-week-old KM mice were treated with subcutaneous (s.c.) injection of HepG2 cells. After 14-day incubation, mice imaging was conducted. For mice imaging in Figure 6, tumor mice were

peritumorally injected with **ES** (10  $\mu$ M), and then treated with SO<sub>3</sub><sup>2-</sup> (100  $\mu$ M) at the 10th minute. Fluorescence images were collected at different time (0-15 min) in red channel: 620-650 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 510$  nm.

### 2. Synthesis of probe ES



Synthesis of compounds 1 and 2: Compounds 1 and 2 were synthesized following the previous method (*Chem Commun* 2017, *53*, 10406-10409; *J Mater Chem B* 2017, *5*, 3940-3944).

**Synthesis of probe ES:** To a 100 mL round-bottomed flask equipped with a magnetic stirring bar were added 1,2,3,3-tetramethyl-3H-indole iodide (200.0 mg, 1.14 mmol), 5-(4-hydroxyphenyl)-thiophene-2-carbaldehyde (116.3 mg, 0.57 mmol), and piperidine (300 µL) in 10 mL of acetonitrile. The reaction was refluxed for 2 h. Then, the mixture was cooled to room temperature, and treated with vacuum distillation. The obtained residual was purified by flash column chromatography over silica gel (100% CH<sub>2</sub>Cl<sub>2</sub>:MeOH = 50:1) to afford a red solid (150 mg, 73% yield). <sup>1</sup>H NMR (400 MHz, Methanol- $d_4$ )  $\delta$  8.59 (d, *J* = 15.6 Hz, 1H), 7.95 (d, *J* = 4.2 Hz, 1H), 7.73 (dd, *J* = 6.2, 4.2, 1.4 Hz, 4H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.54 (d, *J* = 4.2 Hz, 1H), 7.15 (d, *J* = 15.6 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 4.07 (s, 3H), 1.83. (s, 6H). <sup>13</sup>C NMR (100 MHz, Methanol- $d_4$ )  $\delta$  181.03, 159.82, 156.80, 146.36, 143.07, 141.93, 140.30, 138.18, 129.01, 128.81, 127.86, 124.39, 124.14, 122.42, 115.90, 113.89, 108.28, 51.89, 32.70, 25.17. HRMS (ESI): m/z calcd for C<sub>24</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>S<sup>-</sup> [M-H]: 360.14166, Found: 360.14166.

## 3. Supporting results



Figure S1. The fluorescence stability of probe ES. Data represent mean standard error (n = 3).



**Figure S2.** Fluorescence intensity changes at 628 nm of probe **ES** (10  $\mu$ M) with time in the presence of SO<sub>3</sub><sup>2-</sup> (50  $\mu$ M) in glycerol-PBS solution (glycerol:PBS = 8:2, v/v, 20 mM, pH = 7.4) at 37 °C.  $\lambda_{ex} = 510$  nm.



**Figure S3.** (a) Fluorescence spectra of probe **ES** (10  $\mu$ M) to different concentrations of SO<sub>3</sub><sup>2-</sup> (0-60  $\mu$ M) in PBS solution (DMSO:PBS = 2:98, v/v, pH = 7.4). (b) The linear relationship between the fluorescence intensity at 628 nm and the concentration of SO<sub>3</sub><sup>2-</sup> (0-10  $\mu$ M). Data represent mean standard error (n = 3).  $\lambda_{ex} = 510$  nm.



**Figure S4.** The pH effects of probe **ES** (10  $\mu$ M) in the presence of SO<sub>3</sub><sup>2-</sup> (50  $\mu$ M) in PBS solution (DMSO:PBS = 2:98, v/v, pH = 7.4). Data represent mean standard error (n = 3).



Figure S5. HRMS spectra of probe ES in the absence (a) and presence (b) of  $SO_3^{2-}$ .



Figure S6. HPLC spectra of probe ES in the absence (a) and presence (b) of  $SO_3^{2-}$ .



Figure S7. DFT calculation results for ES and ES-SO<sub>3</sub>H at the B3LYP/6-31G(d) level.



**Figure S8.** Cytotoxicity assays of probe **ES** at different concentrations for HepG2 and HeLa cells. Data represent mean standard error (n = 3).



**Figure S9.** Confocal imaging of probe **ES** in HeLa cells. (a) cells were treated with **ES** (10  $\mu$ M) for 1 h; (b, c) cells were first treated with MitoTracker (1  $\mu$ M) /LysoTracker (1  $\mu$ M) for 20 min, after that treated with **ES** (10  $\mu$ M) for another 1 h; (d, e) Fluorescence intensity/distance plots, data were collected from b4 and c4. Fluorescence collected in green channel: 500-550 nm, red channel: 627-680 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 488$  nm, scale bars: 50  $\mu$ m.



**Figure S10.** Relative fluorescence intensity of Figures 4a-j. Fluorescence collected in red channel: 627-680 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 488$  nm, scale bars: 50 µm.



**Figure S11.** Relative fluorescence intensity of Figures 5a-j. Fluorescence collected in red channel: 627-680 nm. Data represent mean standard error (n = 3),  $\lambda_{ex} = 488$  nm, scale bars: 50 µm.



**Figure S12.** Fluorescence intensity inside mouse tumors with time (0-15 min). Data represent mean standard error (n = 3), Fluorescence images were collected at different time (0-15 min) in red channel: 620-650 nm.  $\lambda_{ex} = 510$  nm.



Figure S13. <sup>13</sup>H NMR spectrum of probe ES in Methanol-*d*<sub>4</sub>.



Figure S14. <sup>13</sup>C NMR spectrum of probe ES in Methanol-*d*<sub>4</sub>.