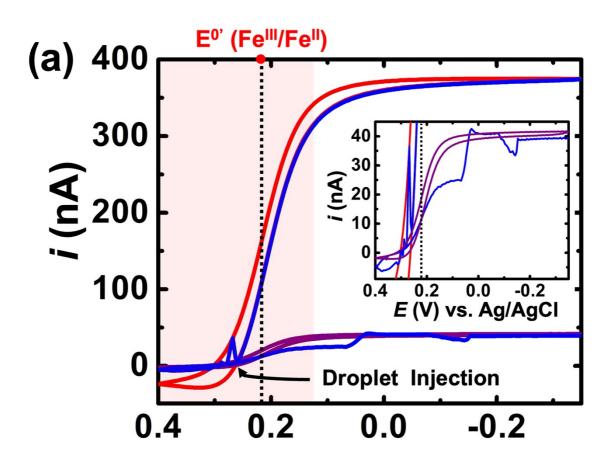
Supplementary Information

Amplifying the Electrochemical Footprint of < 1000 Molecules in a Dissolving Microdroplet

James H. Nguyen^a, Ashutosh Rana^a, and Jeffrey E. Dick^{a,b*}


^aDepartment of Chemistry, Purdue University, West Lafayette, IN, 47907, USA ^bElmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA

*Corresponding Author(s)

Jeffrey E. Dick (jdick@purdue.edu)

Table of Contents

Figure or Theory: Description	Page Number
Figure S1: Cyclic voltammograms 0.5 mM (Cp*) ₂ Fe ^(II) in an aqueous bulk phase of 200 mM K ₃ [Fe(CN) ₆] in 10 mM NaClO ₄ .	S2

Figure S1. (a) Cyclic voltammograms recorded during the dissolution of a DCE droplet containing 0.5 mM $(Cp^*)_2Fe^{(II)}$ in an aqueous bulk phase of 200 mM $K_3[Fe(CN)_6]$ in 10 mM NaClO₄. The dashed lines represent the standard apparent potential for the redox couple $Fe(CN)_6^{3-}$ / $Fe(CN)_6^4$. Inset (i) shows a close up of the purple voltammogram showing suppressed redox activity of $Fe(CN)_6^{3-}$ / $Fe(CN)_6^4$ and absence of any signal from $Cp_2^*(Fe)^{II}$.