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1. Introduction to the basic building blocks of 1DSE-ResCNN

Conv1d is a convolutional layer used for processing one-dimensional data, which extracts local features through one-
dimensional convolution kernels. The formula is:

𝑦𝑖 =
𝐾

∑
𝑘 = 1

𝑥𝑖 + 𝑘 ‒ 1 ⋅ 𝑤𝑘 + 𝑏                                                                                                                            (1)

Where  represents the input sequence, with a length of ;  represents the convolution kernel's weights, with a size of 𝑥 𝑁 𝑤

;  is the bias term; and  is the result of the convolution at the  position of the output.𝐾 𝑏 𝑦𝑖 𝑖

BatchNorm1d is used for batch normalization of one-dimensional data to accelerate model training and improve model 
stability. By standardizing the features of each batch of data to have a mean close to 0 and variance close to 1, it can reduce 
the issues of vanishing or exploding gradients. This normalization process allows the model to converge faster and be more 
robust to different initial conditions. The formula is:

�̂�(𝑖) =
𝑥(𝑖) ‒ 𝜇𝑏𝑎𝑡𝑐ℎ

𝜎 2
𝑏𝑎𝑡𝑐ℎ + 𝜀

                                                                                                                                     (2)

𝑦(𝑖) = 𝛾 ⋅ �̂�(𝑖) + 𝛽                                                                                                                                         (3)

Where is the  feature of the input;  and  are the mean and variance of the batch, respectively;  is a small 𝑥(𝑖) 𝑖 𝜇𝑏𝑎𝑡𝑐ℎ 𝜎𝑏𝑎𝑡𝑐ℎ 𝜀
value to prevent division by zero; and  and  are trainable scaling and shifting parameters.𝛾 𝛽

ReLU is the Rectified Linear Unit activation function, which introduces nonlinearity, allowing the model to fit more 
complex functions. Compared to the Sigmoid or Tanh activation functions, it effectively avoids the vanishing gradient 
problem. Additionally, ReLU has high computational efficiency, making it widely used in deep neural networks. Its 
definition is:

𝑓(𝑥) = max (0,𝑥)                                                                                                                                        (4)

Where, when , the output is ; and when , the output is .𝑥 > 0 𝑥 𝑥 ≤ 0 0

MaxPool1d is a one-dimensional max pooling layer that performs down sampling by taking the maximum value within a 
local window, reducing the spatial dimensions of the data. This helps lower computational cost and model complexity 
while retaining important features, thus helping to prevent model overfitting to some extent. The formula is:

𝑦𝑖 = max (𝑥𝑖:𝑖 + 𝐾)                                                                                                                                         (5)
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Where represents the data from the  to the  window, and  is the size of the pooling window;  is the maximum 𝑥𝑖:𝑖 + 𝐾  𝑖 𝑖 + 𝐾 𝐾 𝑦𝑖

value within that window.

BCEWithLogitsLoss is a loss function used for binary classification tasks. It combines the Sigmoid activation function 
with binary cross-entropy loss, making it suitable for calculating loss directly from the model's unnormalized outputs 
(logits) in classification problems. The formula is:

𝐵𝐶𝐸𝑊𝑖𝑡ℎ𝐿𝑜𝑔𝑖𝑡𝑠𝐿𝑜𝑠𝑠(𝑥,𝑦) =‒ [𝑦 ⋅ log (𝜎(𝑥)) + (1 ‒ 𝑦) ⋅ log (1 ‒ 𝜎(𝑥))]                        (6)

Where  represents the logits from the model output;  represents the true labels; and  is the Sigmoid 𝑥 𝑦
𝜎(𝑥) =

1

1 + 𝑒 ‒ 𝑥

function, which converts logits into probability values.

Adam (Adaptive Moment Estimation) is an adaptive optimization algorithm based on first-order and second-order moment 
estimation, widely used in deep learning. It combines the advantages of momentum optimizers and RMSProp, adjusting 
the learning rate for each parameter adaptively while using momentum to accelerate convergence. It is suitable for various 
neural network models.

2. Residual Block Principle

Residual block a key element in the deep ResNet framework. Its purpose is to alleviate the problem of gradient vanishing 
during network training. The network increases network depth, accelerates neural network training, enhances feature 
extraction, and thus improves image classification performance. The structure of the residual block is depicted in Fig.S1 
(a).
The residual block employs a direct connection that permits the input to be transmitted directly to the output. This 𝑋 
mechanism ensures the integrity of the information within the entire network. When the input is , the learned feature is 𝑋
H(X). The objective is to learn the residuals F(X) = H(X) - X. This enables the original learned feature to be expressed as 
F(X) + X. The rationale for this approach is that residual learning is more straightforward than the original features. Direct 
learning is a more straightforward approach. When the residuals are zero, the stacking layer performs a constant mapping, 
which does not degrade the performance of the network. The residuals are not typically zero, allowing the stacked layer to 
learn new features based on the input features, which further improves network performance.

3. Squeeze-and-Excitation Block Principle

SENet enables the selective emphasis of valuable features and the suppression of less useful ones through global 
information the squeeze-and-excitation block models channel relationships by introducing a squeeze and an excitation 
operation. The structure of the squeeze-and-excitation block is depicted in Fig.S1 (b).
In the squeeze phase, a global average pooling operation is applied to the feature maps of each channel to obtain a value 
for each channel indicating the global importance of that channel. Formally, the statistic  is generated by contracting 𝑧 ∈ 𝑅𝑐

 by the spatial dimension , where the first  element of  is computed as follows:𝑢 𝐻 × 𝑊 𝑐 𝑧

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻 × 𝑊

𝐻

∑
𝑖 = 1

𝑊

∑
𝑗 = 1

𝑢𝑐(𝑖,𝑗)                                                                                                  (7)

As shown in Eq. Formally, the statistic  is generated in terms of the spatial size of the channel reduction  (i.e., the 𝑧𝑐 𝑢

average of the feature maps of the channels ).  denotes the  statistic and  denotes the feature map of channel  with 𝑐 𝑧𝑐 𝑐 𝑢𝑐 𝑐

size .  denotes the value at that position on the feature map. Then the feature map  passes through,  𝐻 × 𝑊 (𝑖,𝑗) 𝑢 𝐹𝑠𝑞(𝑢𝑐)
outputting a global statistics vector of size . This vector aggregates global information in the channel dimension.1 × 1 × 𝑐
Subsequently, in the excitation phase, a weight vector of channels is learned through the application of a fully connected 
layer and a nonlinear activation function. This weight vector is then applied to each channel on the original feature map, 
to weigh the features of different channels. In this manner, the SE module is capable of adaptively learning the relative 
importance of each channel and adjusting the channel contributions in the feature map, weighted according to the 
requirements of the task at hand. This attention mechanism enables the network to concentrate on the most crucial feature 
channels, thereby enhancing the model's performance.



4. Definition and calculation of cumulative feature information

Cumulative Feature Information is typically used in dimensionality reduction techniques like PCA to measure the amount 
of original data information retained by selecting the top few principal components. Cumulative feature information helps 
us understand if the selected principal components effectively preserve significant information from the original data.
The steps to calculate cumulative feature information are as follows:
(1). Eigenvalue Decomposition: Perform eigenvalue decomposition on the covariance matrix of the data to obtain the 
eigenvalues for each principal component.
(2). Explained Variance Ratio: The variance explained by each principal component can be calculated using the formula:

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝜆𝑖

𝑛

∑
𝑖 = 1

𝜆𝑖

                                                                                               (8)

where  is the eigenvalue of the  principal component, representing the amount of variance explained by that component, 𝜆𝑖 𝑖𝑡ℎ

and  is the total number of components.𝑛
(3). Cumulative Variance Ratio: Cumulative feature information refers to the total variance explained by the first  𝑘
principal components:

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑘

∑
𝑖 = 1

𝜆𝑖

𝑛

∑
𝑖 = 1

𝜆𝑖

                                                                                    (9)

(4). Deciding the Number of Principal Components: By observing the cumulative variance ratio, we can decide how many 
components to retain. Typically, when the cumulative variance reaches 80% or 90%, it is considered that most of the 
original information is preserved.



Fig.S1 Structure of Residual Block and Squeeze-and-Excitation block.



Table S1 Principal component analysis dimensionality reduction process
Principal Component Analysis Dimensionality Reduction

Input: The set of sample is ，each with n-dimensional features . Each feature  has its 𝑋 = {𝑋1,𝑋2,...,𝑋𝑀} 𝑋𝑖 = {𝑥𝑖
1,𝑥𝑖

2,...,𝑥 𝑖
𝑛}𝑇 𝑥𝑗

own eigenvalues. The dimensionality of the low-dimensional space is ， .𝐾 0 ≤ 𝐾 ≤ 𝑛

1: Centering all samples be de-meaned (decentralized): 
𝑥𝑗 = 𝑥𝑗 ‒

1
𝑛

𝑛

∑
𝑖 = 1

𝑥𝑗

2: Compute the covariance matrix of the samples: 
𝐶𝑜𝑛𝑣𝑋 =

1
𝑛

𝑋𝑋𝑇

3: Compute the eigenvalues and corresponding eigenvectors of covariance matrix  ： , where 𝐶𝑜𝑛𝑣𝑋 𝐶𝑜𝑛𝑣𝑋 = Λ𝐿

 are the eigenvalues of the covariance matrix ，and  are the eigenvectors of the covariance matrix   .Λ = 𝑑𝑖𝑎𝑔[𝜆1,𝜆2,...,𝜆𝑛] 𝑋 𝐿 𝑋

4: Sort the eigenvalues  in descending order, then select the largest 。Next, use the Λ(𝑠𝑒𝑡𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑛 ≥ 0) 𝐾

corresponding eigenvectors as row vectors to form the eigenvector matrix ，and transform the data into a new matrix 𝐾 𝑃

constructed by eigenvectors .𝐾 𝑌

Output:  where  is the matrix after dimensionality reduction.𝑌 = 𝑃𝑋 𝑌

Table S2 Original information retained after reducing the dimensions of the three datasets (OC_L8, OC_L4, OC_H) to 10, 
50, 100, 150, and 200 using PCA (results rounded to two decimal places).

Cumulative feature informationDataset\Dimension
10(%) 50(%) 100(%) 150(%) 200(%)

OC_L8 83.63 96.87 99.08 99.74 100.00
OC_L4 90.74 98.78 99.66 99.88 99.96
OC_H 36.33 75.49 92.14 97.87 99.71

Table S3 Average accuracy of the 1DSE-ResCNN model over five experiments on a test set of three datasets, reduced to 50, 
100, and 200 dimensions using PCA.

Dataset Dimension Acc(%)

200 100.00
100 100.00OC_L8

50 100.00
200 98.998
100 96.667OC_L4

50 95.667
200 99.076
100 95.692OC_H

50 96.308

Abbreviations: Acc, Accuracy.



Table S4 Results of five tests for six models on the test set of ovarian cancer 8-7-02 dataset, reduced to 200 dimensions using 
PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random seeds (0, 2, 4, 6, 8). 
Each random seed corresponds to a completely different data split, resulting in five independent experiments. The results 
are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 98.68 98.15 96.30 99.00 98.55
RF 84.21 78.61 59.26 87.74 80.81

0

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 94.74 94.26 92.59 94.26 94.26
RF 77.63 68.52 37.04 87.12 69.64

2

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 100.00 100.00 100.00 100.00 100.00
RF 85.53 79.02 60.00 88.54 81.63

4

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 98.68 97.50 95.00 99.12 98.28
RF 86.84 78.21 60.00 86.41 81.06

6

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 93.42 92.25 86.67 94.07 92.98
RF 72.37 65.00 30.00 84.33 63.78

8

LR 100.00 100.00 100.00 100.00 100.00
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.



Table S5 Results of five tests for six models on the test set of ovarian cancer 4-3-02 dataset, reduced to 200 dimensions using 
PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random seeds (0, 2, 4, 6, 8). 
Each random seed corresponds to a completely different data split, resulting in five independent experiments. The results 
are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 95.00 95.09 96.42 94.94 94.99
SVM 95.00 94.87 92.86 95.12 94.97
KNN 76.67 77.90 96.43 81.25 76.24
RF 66.67 67.63 82.14 68.89 66.33

0

LR 96.66 96.65 96.43 96.65 96.65
1DSE-ResCNN 98.33 98.33 96.67 98.39 98.33
ResNet18 96.67 96.67 96.67 96.67 96.67
SVM 91.67 91.67 93.33 91.71 91.66
KNN 71.67 71.67 90.00 75.03 70.68
RF 75.00 75.00 76.67 75.03 74.99

2

LR 91.67 91.67 93.33 91.71 91.66
1DSE-ResCNN 98.33 98.39 100.00 98.33 98.33
ResNet18 93.33 93.21 89.65 93.60 93.30
SVM 93.33 93.33 93.10 93.33 93.33
KNN 80.00 80.42 93.10 82.14 79.80
RF 75.00 75.03 75.86 75.00 74.99

4

LR 93.33 93.33 93.10 93.33 93.33
1DSE-ResCNN 98.33 97.83 100.00 98.68 98.22
ResNet18 96.67 97.30 94.59 96.00 96.53
SVM 95.00 95.12 94.59 94.44 94.75
KNN 91.67 89.95 97.30 92.50 90.94
RF 80.00 82.14 72.97 80.42 79.80

6

LR 95.00 95.12 94.59 94.44 94.75
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 95.00 95.05 93.55 95.00 94.99
SVM 93.33 93.33 93.55 93.33 93.33
KNN 86.67 86.43 93.55 87.43 86.53
RF 76.67 77.20 61.29 79.85 76.24

8

LR 91.67 91.71 90.32 91.67 91.66
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.



Table S6 Results of five tests for six models on the test set of high-resolution ovarian cancer dataset, reduced to 200 
dimensions using PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random 
seeds (0, 2, 4, 6, 8). Each random seed corresponds to a completely different data split, resulting in five independent 
experiments. The results are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 98.46 98.21 100.00 98.68 98.42
SVM 93.85 93.29 97.30 94.23 93.66
KNN 78.46 75.00 100.00 86.27 75.38
RF 93.85 93.29 97.29 94.23 93.66

0

LR 95.38 94.64 100.00 96.25 95.22
1DSE-ResCNN 96.92 96.30 100.00 97.50 96.79
ResNet18 93.85 92.59 100.00 95.24 93.50
SVM 90.77 88.89 100.00 93.18 90.09
KNN 81.54 77.78 100.00 88.00 78.90
RF 92.31 90.74 100.00 94.19 91.81

2

LR 90.77 88.89 100.00 93.18 90.09
1DSE-ResCNN 98.46 98.21 100.00 98.68 98.42
ResNet18 95.38 94.64 100.00 96.25 94.64
SVM 92.31 91.07 100.00 94.05 91.94
KNN 75.38 71.43 100.00 84.91 71.11
RF 90.77 89.29 100.00 93.02 90.25

4

LR 92.31 91.07 100.00 94.05 91.93
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 95.38 95.59 100.00 95.59 95.38
SVM 89.23 89.28 90.32 89.20 89.22
KNN 69.23 70.59 100.00 80.39 66.97
RF 95.38 95.59 100.00 95.59 95.38

6

LR 92.31 92.36 93.55 92.28 92.30
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 96.92 96.88 100.00 97.14 96.88
SVM 95.38 95.31 100.00 95.83 95.37
KNN 70.77 70.31 100.00 81.73 67.71
RF 96.92 96.88 100.00 97.14 96.92

8

LR 95.38 95.31 100.00 95.83 95.37
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.



Table S7 Results of five tests for six models on the train set of ovarian cancer 8-7-02 dataset, reduced to 200 dimensions 
using PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random seeds (0, 2, 4, 
6, 8). Each random seed corresponds to a completely different data split, resulting in five independent experiments. The 
results are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 96.61 95.31 90.62 97.48 96.25
RF 100.00 100.00 100.00 100.00 100.00

0

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 97.18 96.09 92.19 97.88 96.89
RF 100.00 100.00 100.00 100.00 100.00

2

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 97.18 96.21 92.42 97.84 96.93
RF 100.00 100.00 100.00 100.00 100.00

4

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 97.74 97.18 94.37 98.18 97.62
RF 100.00 100.00 100.00 100.00 100.00

6

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 97.18 95.90 91.80 97.93 96.80
RF 100.00 100.00 100.00 100.00 100.00

8

LR 100.00 100.00 100.00 100.00 100.00
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.



Table S8 Results of five tests for six models on the train set of ovarian cancer 4-3-02 dataset, reduced to 200 dimensions 
using PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random seeds (0, 2, 4, 
6, 8). Each random seed corresponds to a completely different data split, resulting in five independent experiments. The 
results are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 90.00 89.87 94.44 90.36 89.94
RF 100.00 100.00 100.00 100.00 100.00

0

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 90.00 90.00 98.57 91.21 89.93
RF 100.00 100.00 100.00 100.00 100.00

2

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 86.43 86.29 95.77 87.80 86.29
RF 100.00 100.00 100.00 100.00 100.00

4

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 87.14 87.59 92.06 87.22 87.12
RF 100.00 100.00 100.00 100.00 100.00

6

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 94.29 94.37 100.00 94.81 94.28
RF 100.00 100.00 100.00 100.00 100.00

8

LR 100.00 100.00 100.00 100.00 100.00
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.



Table S9 Results of five tests for six models on the train set of high-resolution ovarian cancer dataset, reduced to 200 
dimensions using PCA. (The datasets were randomly split into training and testing sets at a 7:3 ratio using five random 
seeds (0, 2, 4, 6, 8). Each random seed corresponds to a completely different data split, resulting in five independent 
experiments. The results are rounded to two decimal places).

Random seed Model Acc(%) Sen(%) Spe(%) Pre(%) F1(%)
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 84.77 82.84 100.00 89.25 83.62
RF 100.00 100.00 100.00 100.00 100.00

0

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 86.75 85.29 100.00 90.29 86.00
RF 100.00 100.00 100.00 100.00 100.00

2

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 83.44 81.34 100.00 88.53 81.34
RF 100.00 100.00 100.00 100.00 100.00

4

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 78.81 73.77 100.00 86.89 73.77
RF 100.00 100.00 100.00 100.00 100.00

6

LR 100.00 100.00 100.00 100.00 100.00
1DSE-ResCNN 100.00 100.00 100.00 100.00 100.00
ResNet18 100.00 100.00 100.00 100.00 100.00
SVM 100.00 100.00 100.00 100.00 100.00
KNN 79.47 75.40 100.00 86.97 75.40
RF 100.00 100.00 100.00 100.00 100.00

8

LR 100.00 100.00 100.00 100.00 100.00
Abbreviations: Acc, Accuracy; Pre, Precision; Sen, Sensitivity; Spe, Specificity; F1, F1-Scores.


