Supporting Information

Construction of Regulable Chiral Recognition Platform Based on the Photothermal Effect of Popcorn-like Gold Nanoparticles/Bovine Serum Albumin

Yujie Wang,^a Haibo Chen,^a Peiming Liu,^b Wenrong Cai,^a Datong Wu,^a Junyao Li,*^a and Yong

Kong*a

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Engineering Research Center of Biodegradable Materials, School of Petrochemical Engineering,

Changzhou University, Changzhou 213164, China

^b Changzhou Institute of Materia Medica Co., Ltd., Changzhou 213000, China

E-mail: yzkongyong@cczu.edu.cn (Y. Kong) and lijunyao@cczu.edu.cn (J. Li).

Fig. S1 Extinction spectra of AuNRs and AuNPs.

Fig. S2 Temperature-time curves of AuNPs and AuNPs/BSA under the irradiation of NIR.

Calculation of Thermal Conversion Efficiency of AuNPs

The thermal conversion efficiency (η) of AuNPs can be calculated according to the previous literature,^{S1} and the formula is listed as follows:

$$\eta = \frac{hS(T_{max} - T_{amb}) - Q_{dis}}{I(1 - 10^{-A_{808}})}$$

Where h is the thermal conversion constant, S is the container surface area, T_{max} is the maximum temperature at equilibrium (61.2 °C), T_{amb} is the ambient temperature (29.0 °C), Q_{dis} is the energy loss generated by laser irradiation (~0.014 W), I is the power density of the NIR (3.33 W cm⁻²) and A_{808} is the absorbance of AuNPs at the wavelength of 808 nm (~0.454).

Therefore, hS can be calculated from the following formula:

hS =
$$\frac{\sum mC_p}{\tau_s}$$

where m is the mass of the solution (~1.5 g), C_p is the specific heat capacity of the solution (4.2 J g⁻¹ °C⁻¹), τ_s represents the time constant, which can be calculated from the following two formulas:

$$\tau_s = -\frac{t}{\ln(\theta)}$$
$$\theta = \frac{T_{amb} - T}{T_{amb} - T_{max}}$$

where t and θ represent the time in the cooling process and the driving temperature force, respectively.

According to the linear fitting diagram between time (t) and the negative logarithm of θ (-ln θ) (Fig. S3B), the values of time constant (τ_s) and thermal conversion efficiency (η) are calculated to be 293.3 s and 31.3%, respectively.

Fig. S3 (A) Temperature-time (T-t) curve of AuNPs during the process of heating and cooling.
(B) Linear fitting diagram of time with the negative logarithm of driving temperature force (-lnθ) during the cooling process.

Fig. S4 HRTEM of (A) AuNRs and (B) AuNPs.

Fig. S5 SEM images of AuNPs at different magnifications.

Fig. S6 DPVs of bare GCE after incubation in 0.1 M PBS of pH 7.0 without Tyr (blank), with 1.0 mM L-Tyr, and with 1.0 mM D-Tyr, respectively.

Fig. S7 DPVs of AuNPs/NIR/GCE after incubation in 0.1 M PBS of pH 7.0 without Tyr (blank), with 1.0 mM L-Tyr, and with 1.0 mM D-Tyr, respectively.

Reference

S1. D. K. Roper, W. Ahn and M. Hoepfner, J. Phys. Chem. C 2007, 111, 3636–3641.