		рН	7.4			pł	18			pł	19	
Substance	Ethyl acetate	Hexane	<i>Tert</i> -butyl methyl ether	Dichloro- methane	Ethyl acetate	Hexane	<i>Tert</i> -butyl methyl ether	Dichloro- methane	Ethyl acetate	Hexane	<i>Tert</i> -butyl methyl ether	Dichloro- methane
ALD-52 (1A-LSD)	••••	••	•••	••••	••••	••	••••	••••	••••	••	••	••••
AL-LAD	••••	••	••••	••••		••	••••	••••	• • • •	••	•••	••••
LAMPA	••••	••	•••	••••	••••	••	••••	••••	••••	••	•••	••••
LSD	••••	••	•••	••••	••••	••	••••	••••	••••	••	•••	••••
LSM-775	••••	••	•••	••••	••••	••	•••	••••	••••	••	•••	•••••
LSZ	••••	••	•••	••••	••••	••	•••	••••	••••	••	•••	•••••
MiPLA	••••	••	•••	••••	••••	••	••••	••••	••••	••	•••	••••
1B-LSD	•••	••••	•••	••••	•••	••••	••••	••••	••••	•	•••	••••
1cP-LSD	••••	•••	••••	••••	••••	••••	••••	••••	••••	•••	•••	••••
1cP-MiPLA	••••	•••	•••	••••	••••	••••	••••	••••	••••	•••	•••	••••
1P-LSD	••••	•••	•••	••••	••••	•••	••••	••••	••••	••••	•••	••••
1P-MiPLA	••••	•••	•••	••••	••••	••••	••••	••••	••••	••••	•••	••••
1V-LSD	•••	•••	•••	••••	•••	••••	•••	••••	•••	•••	••	••••
2-Bromo-LSD	•••	••	•••	••••	•••	••	••••	••••	••••	•••	•••	••••
2-oxo-3-OH-LSD	•••	•	••	••	•••	•	••	••	••••	••	••	•••

Table S1. Results of optimization of the sample preparation procedure with the use of liquid-liquid extraction (LLE) technique in different pH conditions.

••••• The substance extracts the most effectively under given conditions; •••• The substance extracts very effectively under given conditions; ••• The substance can be extracted under given conditions but the process is less efficient; •• The substance extracts very poorly under given conditions; • The substance practically cannot be extracted under given conditions

S2: Isomers separation

S3: Method development.

Time [min]	Flow [mL/min]	A [%]	B [%]
0.0		95.0	5.0
10.0		5.0	95.0
12.0	0.3	5.0	95.0
12.1		95.0	5.0
15.0		95.0	5.0

Flow B [%] Time [min] A [%] [mL/min] 0.0 95.0 5.0 2.0 15.0 85.0 20.0 80.0 20.0 35.0 0.3 65.0 35.0 5.0 95.0 38.0 40.0 5.0 95.0 40.1 95.0 5.0 50.0 95.0 5.0

S4: Multiple reaction monitoring (MRM) chromatograms

Figure S4.1. Multiple reaction monitoring (MRM) chromatograms of BLANK samples (whole blood matrix)

1 LSD, MiPLA and LAMPA; 2 1P-LSD and 1P-MiPLA; 3 1cP-LSD and 1cP-MiPLA

Figure S4.2. Multiple reaction monitoring (MRM) chromatograms of samples in concentration of 1 ng/mL (whole blood matrix)

	The	Concontration	Intra	aday	Inte	rday	_	Matrix	Drocoss
Substance	coefficient of		Procision	Accuracy	Procision	Accuracy	Recovery	offoct	efficiency
Substance	determination		[%]*		[%]*		[%]*	[%]*	[%] *
	(R ²)	[pg/IIIL]	[70]	[/0]	[70]	[/0]		[/0]	[70]
		5	4.0	8.5	6.8	-3.1	96.5	-3.5	76.8
ALD-52	0.9999	500	8.3	9.0	12.2	-5.6	110.3	10.3	86.8
		1000	6.9	9.3	7.3	-0.5	113.4	13.4	88.2
		5	6.3	-5.8	1.4	-9.1	87.4	-12.6	62.6
AL-LAD	0.9999	500	7.2	-13.3	5.5	-5.2	105.2	5.2	67.9
		1000	9.7	-10.9	11.4	-9.7	88.4	11.6	71.1
		5	0.3	7.5	0.7	7.3	101.8	1.8	77.5
LAMPA	0.9998	500	6.9	8.5	8.5	7.4	109.8	9.8	89.4
		1000	1.1	-0.3	1.6	0.0	109.2	9.2	92.2
		5	5.5	6.1	9.2	-4.2	104.4	4.4	82.6
LSD	0.9995	500	7.6	13.2	7.8	5.5	109.9	9.9	90.2
		1000	6.6	2.2	5.9	1.7	108.4	8.4	93.2
		5	4.9	6.8	2.3	1.5	103.2	3.2	85.0
MiPLA	0.9997	500	5.8	2.6	4.8	3.2	104.7	4.7	90.2
		1000	9.6	2.5	7.6	-4.3	102.4	2.4	91.0
		5	5.4	12.0	10.5	8.2	98.4	-1.6	86.7
LSM-775	0.9999	500	9.1	6.0	15.6	1.6	116.6	16.6	96.5
		1000	15.8	9.1	2.0	-1.8	107.2	7.2	87.0
-		5	12.2	10.3	7.8	13.6	94.8	-5.2	75.9
LSZ	0.9999	500	8.2	9.4	12.1	6.6	118.6	18.6	88.7
		1000	3.6	0.0	1.2	-7.3	107.5	7.5	84.6
		5	5.5	7.5	5.9	-1.1	89.5	-10.5	72.2
1B-LSD	0.9998	500	6.3	7.7	8.2	-3.6	111.3	11.3	89.0
-		1000	7.2	8.1	6.3	0.5	109.4	9.4	85.4
		5	7.8	3.8	5.8	-3.2	91.5	-8.5	80.0
1V-LSD	0.9998	500	4.1	7.6	3.4	5.7	102.3	2.3	76.8
		1000	5.5	4.8	1.6	9.3	109.1	9.1	97.3
		5	7.2	8.0	15.3	-7.5	110.1	10.1	73.0
1cP-ISD	0 9986	500	6.8	-95	10.5	-11.8	115.4	15.4	84 1
101 200	0.5500	1000	85	-2.8	19	4 5	113.2	13.2	98.1
		5	6.8	6.8	3.8	-1.0	102.9	2 9	84.0
1ςΡ-ΜίΡΙ Δ	0 9987	500	5.8	8.6	0.4	3.8	97.2	-2.5	84.8
	0.5507	1000	6.0	3.8	2.6	10.2	105 5	55	101.9
		5	3.8	-0.5	1.3	3 1	109.1	9.0	74.4
	0 9996	500	9.0	0.5	8.0	-0 1	105.1	17.1	79.4
11 250	0.5550	1000	3.2	8.0	3.7	2.8	111 /	11 /	93.0
		5	9.7	7.2	2.6	14.4	111.4	1/ 5	75.0
	0 0000	500	0.7 7 0	-7.2	12.0	-14.4	106.9	14.J 6 9	75.2 90.1
IF-WIFLA	0.9999	1000	7.2	-1.0	12.9	-5.5	110.8	10.0	07.1
		T000	7.6	-3.1	12.0	-3.3	20.0	10.0	<u> </u>
2 Bromo ISD	0 0000	5	7.0 4 E	4.J 0.2	9.Z 7 0	-4.2	00.0	-19.4	70.1
2-вгощо-г2D	0.3333	500 1000	4.5	0.3 12.4	7.ð	5.5 1 7	103.0	3.U 11.0	7U.I
		1000	3.3	13.4	5.9	1./	111.9	17.9	60.2
	0.0002	5	7.8 0.5	0.J	5.8	/.Z	82.1	-17.9	09.3 78.0
2-0x0-3-UH-LSD	0.9993	500	9.5	8.9	9.4	8.1	89.9	-10.1	78.9
		1000	10.1	5.8	4.6	10.4	92.5	-7.5	89.5

Table S5. Validation results.

* *n*=5;

Limit of quantification (LOQ) for all substances was 0.5 pg/mL

S6. Results of stability study

Figure S6.1. Results of stability experiments (a) and (b) for ALD-52

21,4

42,4

30

LSD [%]

0.0

7.3

21.4

Day 30 76.2 73.9 [%]

Day 30 71.2 71.3 [%]

ALD-52 [%]

100.0

52.2

6.6

Day 0

Day 7

Day 30

LSD [%]

0.0

0.0

0.0

ALD-52 LSD

Urine / borax

ALD-52 [%]

100.0

39.2

2.6

Day 0

Day 7

Day 30

LSD [%]

0.0

45.0

17.8

ALD-52 LSD

ALD-52 LSD

Serum ALD-52 [%] LSD [%] Day 0 100.0 0.0 Day 7 69.2 10.8 Day 30 39.9 30.4

Figure S6.2. Results of stability experiments (a) and (b) for AL-LAD

100

AL-LAD LSD

Plasma								
	AL-LAD [%]	LSD [%]						
Day 0	100.0	0.0						
Day 7	70.9	0.0						
Day 30	51.3	0.0						

AL-LAD LSD

AL-LAD LSD

AL-LAD LSD

100

100

AL-LAD LSD

100

AL-LAD ISD

Figure S6.4. Results of stability experiments (a) and (b) for 1cP-LSD

■ 1cP-LSD ■ LSD

■ 1P-LSD ■ LSD

Figure S6.5. Results of stability experiments (a) and (b) for 1P-MiPLA

Figure S6.6. Results of stability experiments (a) and (b) for 1cP-MiPLA

■ 1P-MiPLA ■ MiPLA

MiPLA [%]

Plasma									
	1cP-MiPLA [%]	MiPLA [%]							
Day 0	100.0	0.0							
Day 7	37.5	19.6							
Day 30	14.8	16.1							

■1cP-MiPLA ■MiPLA

80

■1B-LSD ■LSD

100

■1B-LSD ■LSD

25,5

41,4

100

80

40

20

0

[%] 60

Figure S6.7. Results of stability experiments (a) and (b) for 1B-LSD

■1B-LSD ■LSD

47,7

36,3

100

80

40

20

0

[%] 60

100

80

40

20

0

[%] 60

	7	30		7	30		7	30		7		30		7	30
w	hole blood / N	NaF	Who	ole blood / Cit	trate		Urine / NaF			Urine /	oorax			Serum	
	1B-LSD	LSD		1B-LSD [%]	LSD [%]		1B-LSD [%]	LSD [%]		1B-LSD	[%]	LSD [%]		1B-LSD [%]	LSD [%]
0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0	Day	100.	0	0.0	Day 0	100.0	0.0
7	60.9	15.9	Day 7	0.5	47.7	Day 7	97.3	0.0	Day	41.4	1	25.5	Day 7	2.9	58.3
30	40.3	42.4	Day 30	0.3	36.3	Day 30	58.0	0.0	Day 3	0.2		0.0	Day 30	0.2	37.9

58,0

■1B-LSD ■LSD

97,3

Figure S6.8. Results of stability experiments (a) and (b) for 1V-LSD

	Plasma									
	1V-LSD [%]	LSD [%]								
0	100.0	0.0								
7	0.5	55.1								
30	0.2	33.2								

■ 1V-LSD ■ LSD

100

80

■1B-LSD ■LSD

42,4

40,3

15,9

60,9

100

80

40

20

0

[%] 60

■ 1V-LSD ■ LSD 100 80

[%] 60			[%] 60			[%] 60			[%] 60			[%] 60		
40	65,7		40	60.3	56.2	40	66,8		40	24,2		40	66,5	
20		58,9	20	00,5	56,3	20		41,3	20	36,5		20		52,3
0 —			0 —			0			0			0		
	7	30		7	30		7	30		7	30		7	30
	Whole blood	/ NaF	v	/hole blood /	Citrate		Urine / NaF			Urine / bora	x		Serum	
	1V-LSD [9	6] LSD [%]		1V-LSD [9	6] LSD [%]		1V-LSD [%]	LSD [%]		1V-LSD [%]	LSD [%]		1V-LSD [%]	LSD [%]
Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0
Day 7	65.7	5.6	Day 7	0.5	60.3	Day 7	66.8	0.0	Day 7	36.5	24.2	Day 7	0.2	66.5
Day 30	58.9	17.1	Day 30	0.5	56.3	Day 30	41.3	0.0	Day 30	0.0	0.0	Day 30	0.0	52.3

2-Br-LSD LSD

Figure S6.9. Results of stability experiments (a) and (b) for 2-Bromo-LSD

Figure S6.10. Results of stability experiments (a) and (b) for 2-oxo-3-OH-LSD

80

80

80

Plasma								
	Metabolite [%]	LSD [%]						
Day 0	100.0	0.0						
Day 7	32.4	0.0						
Day 30	0.0	0.0						

2-oxo-3-OH-LSD LSD

100 80

[%] 60			[%] 60			[%] 60			[%] 60			[%] 60		
40			40			40	57.0		40			40	_	
20	45,1	22.2	20	41,4	27.7	20	57,0	_	20			20	33,3	
0 —			0 —			0 —		14,3	0 —	0,2		0 —		
	7	30		7	30		7	30		7	30		7	30
	Whole blood / I	NaF	W	/hole blood / Cit	rate		Urine / NaF			Urine / borax			Serum	
	Metabolite [%]	LSD [%]		Metabolite [%]	LSD [%]		Metabolite [%]	LSD [%]		Metabolite [%]	LSD [%]		Metabolite [%]	LSD [%]
Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0	Day 0	100.0	0.0
Day 7	45.1	0.0	Day 7	41.4	0.0	Day 7	57.6	0.0	Day 7	0.2	0.0	Day 7	33.3	0.0
Day 30	22.2	0.0	Day 30	27.7	0.0	Day 30	14.3	0.0	Day 30	0.0	0.0	Day 30	0.0	0.0

80

Figure S6.11. Results of stability experiments (a) and (b) for LSZ

100

80

40

20

0

Day 0

Day 7

Day 30

80

[%] 60

LSZ

68,9

30

LSZ [%]

100.0

79.0

68.9

79,0

7

Whole blood / NaF

100

80

40

20

0

Day 0

Day 7

Day 30

80

[%] 60

100

80

40

Day 30

[%] 60

LSZ

0.0

100

	Plasma
	LSZ [%]
Day 0	100.0
Day 7	45.4
Day 30	12.9

23.1

42,8	20	32,0		20		0,9		20	50,8	23,1	
30	0	7	30	0	7	30		0	7	30	
Citrate		Urine / NaF		Urine / b		/ borax		Serum		m]
SZ [%]			LSZ [%]			LSZ [%]				LSZ [%]	
100.0	Day 0		100.0	Day 0		100.0		Day 0		100.0	

14

LSM-775

80

[%] 60

30

0.9

Day 30

LSZ

LSZ

71,9

7

Whole blood /

42.8

Day 30

	Plasma
	LSM-775 [%]
Day 0	100.0
Day 7	24.4
Day 30	4.9

LSM-775

100

80

LSZ

[%] 60 40

100

80

[%] 60			[%] 60				[%] 60			[%	60 [[%]	60			
40	89,6	70,2	40		1 0		40				40				40			
20			20)	1,5	38,4	20	29,2			20	56,3			20	51,6	_	
0 ——			0				0		0,1		0				0		15,4	
	7	30			7	30		7	30			7	30			7	30	
v	Vhole bloc	od / NaF		Whol	e blood ,	/ Citrate		Urine /	NaF			Urine	/ borax			Serum		
	LS	SM-775 [%]			LSI	M-775 [%]		LS	6M-775 [%]				LSM-775 [%]				_SM-775 [%]	
Day 0		100.0	Da	ay O		100.0	Day 0		100.0		Day 0		100.0		Day 0		100.0	
Day 7		89.6	Da	ay 7		61.3	Day 7		29.2		Day 7		56.3		Day 7		51.6	
Day 30		70.2	Da	iy 30		38.4	Day 30		0.1		Day 30		0.0		Day 30		15.4	

80

[%] 60

Figure S6.13. Results of stability experiment (a) for LSD

Figure S6.14. Results of stability experiment (a) for MiPLA

20	50,7	39,7	20	53,5	43,7		20	37,6		
0	7	30	0	7	30		0	7	30	
	Serum			Pla	asma			Urine	/ borax	
	Mi	PLA [%]			MiPLA [%]				MiPLA [%]	
Day 0	1	100.0	Day 0		100.0	[Day 0		100.0	
Day 7		50.7	Day 7		53.5		Day 7		37.6	

Figure S6.15. Results of stability experiment (a) for LAMPA

S7: Summarization of modern analytical methods for determination of LSD in biological samples

No	Biological sample	Determined substances ^a	Internal standard	Sample preparation	Method	Mode	LOQ [pg/mL] ^b	Year	Reference
L1	Urine (5 mL) Blood (1 mL)	LSD 2-oxo-3-OH-LSD	OH-LAMPA	LLE combined with SPE (in case of blood)	LC-MS (SIM)	ESI	100	2000	Sklerov et al.
L2	Urine Plasma Blood (1 mL)	LSD Iso-LSD Nor-LSD 2-oxo-3-OH-LSD	$LSD-d_3$	LLE	HPLC-MS/MS (MRM)	ESI	20	2001	Canezin et al.
L3	Urine (2 mL)	LSD Nor-LSD	$LSD-d_3$	LLE	HPLC-MS (SIM)	ESI	50	1997	Hoja et al.
L4	Oral fluid (900 μL)	LSD	$LSD-d_3$	Microextraction by packed sorbent C18 (MEPS)	HPLC-MS/MS (MRM)	ESI	2470	2023	Lesne et al.
L5	Urine (100 μL)	LSD 2-oxo-3-OH-LSD	$LSD-d_3$	LLE	UPLC-QTRAP -MS/MS (MRM)	ESI	25	2015	Jang et al.
L6	Blood Urine (1 mL)	LSD <i>iso</i> -LSD 2-oxo-3-OH-LSD	LSD-d₃	LLE	HPLC-MS/MS (MRM)	ESI	10	2005	Johansen et al.
L7	Blood Urine (1 mL)	LSD Iso-LSD Nor-LSD O-H-LSD	$LSD-d_3$	LLE	UPLC-MS/MS (MRM)	ESI	20	2009	Chung et al.
L8	Blood (200 μL)	LSD 2-oxo-3-OH-LSD	LSD-d₃	Precipitation with ACN / LLE	HPLC-MS/MS (MRM)	ESI	12.5	2023	Dimitrova et al.
L9	Serum Plasma (1 mL) Urine (0.5 mL)	LSD Iso-LSD Nor-LSD OH-LSD	LSD-d₃	Hydrolysis with β- glucuronidase (in case of urine samples); SPE	LC-MS/MS (MRM)	ESI	12	2013	Martin et al.

Table S7.1. Summarization of modern liquid chromatographic methods coupled with mass spectrometry for determinationof LSD in biological samples.

^a LSD analogs, ^b the lowest limit of quantification in the group of determined LSD analogs; LOQ – limit of quantification, LLE – liquid liquid extraction, LC – liquid chromatography, HPLC – high-performance liquid chromatography, UPLC – ultra-performance liquid chromatography, MS/MS – tandem mass spectrometry, ACN – acetonitrile, MRM – multiple reaction monitoring, ESI – electrospray ionsource, APCI – atmospheric pressure ionization, QTRAP – quadrupole-ion-trap mass spectrometer, SIM – single ion monitoring, SPE – solid-phase

Sklerov, J.H., Magluilo, J. Jr, Shannon, K.K., Smith, M.L. Liquid chromatography-electrospray ionization mass spectrometry for the detection of lysergide and a major metabolite, 2-oxo-3-hydroxy-LSD, in urine and blood. *J Anal Toxicol.* **2000**, 24(7) 543-9. doi: 10.1093/jat/24.7.543.

Canezin, J., Cailleux, A., Turcant, A., Le Bouil, A., Harry, P., Allain, P. Determination of LSD and its metabolites in human biological fluids by high-performance liquid chromatography with electrospray tandem mass spectrometry. *J Chromatogr B Biomed Sci Appl.* **2001** 765(1), 15-27. doi: 10.1016/s0378-4347(01)00386-3.

Hoja, H., Marquet, P., Verneuil, B., Lotfi, H., Dupuy, J.L., Lachâtre, G. Determination of LSD and N-demethyl-LSD in urine by liquid chromatography coupled to electrospray ionization mass spectrometry. *J Chromatogr B Biomed Sci Appl.* **1997**, 692(2), 329-35. doi: 10.1016/s0378-4347(97)00008-x.

Lesne, E., Muñoz-Bartual, M., Esteve-Turrillas, F.A. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography–tandem mass spectrometry. *Anal Bioanal Chem.* **2023**, 415, 3607–3617. https://doi.org/10.1007/s00216-023-04751-2.

Jang, M., Kim, J., Han, I., Yang, W. Simultaneous determination of LSD and 2-oxo-3-hydroxy LSD in hair and urine by LC-MS/MS and its application to forensic cases. *J Pharm Biomed Anal.* **2015**, 115, 138-43. doi: 10.1016/j.jpba.2015.07.001.

Johansen, S.S., Jensen, J.L. Liquid chromatography-tandem mass spectrometry determination of LSD, ISO-LSD, and the main metabolite 2-oxo-3-hydroxy-LSD in forensic samples and application in a forensic case. *J Chromatogr B Analyt Technol Biomed Life Sci.* **2005**, 825(1), 21-8. doi: 10.1016/j.jchromb.2004.12.040.

Chung, A., Hudson, J., McKay, G. Validated ultra-performance liquid chromatography-tandem mass spectrometry method for analyzing LSD, iso-LSD, nor-LSD, and O-H-LSD in blood and urine. *J Anal Toxicol.* **2009**, 33(5), 253-9. doi: 10.1093/jat/33.5.253.

Dimitrova, A., Di Milia, M.G., Rensi, R., Grassi, S., Gualco, B., Vaiano, F. Determination of Lysergic Acid Diethylamide and 2-Oxo-3-Hydroxy-LSD in Blood: Validation and Comparison of Two Liquid Chromatography–Tandem Mass Spectrometry Methods. *Separations* **2023**, 10, 502. https://doi.org/10.3390/separations10090502.

Martin, R., Schürenkamp, J., Gasse, A., Pfeiffer, H., Köhler, H. Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS. *Int J Legal Med.* **2013**, 127(3), 593-601. doi: 10.1007/s00414-012-0796-1.

L10	Urine Blood Vitreous humor (2 mL)	LSD Iso-LSD Nor-LSD 2-oxo-3-OH-LSD	LSD-d ₃	LLE	HPLC-QTRAP- MS/MS	ESI	10	2007	Favretto et al.
L11	Plasma (100 μL)	LSD Iso-LSD Nor-LSD 2-oxo-3-OH-LSD	$LSD-d_3$	Precipitation with ACN	HPLC-MS/MS (SRM)	APCI	50	2017	Dolder et al.
L12	Serum (100 μL)	LSD 2-oxo-3-OH-LSD	LSD-d₃	Precipitation with ACN	HPLC-MS/MS (SRM)	APCI	100	2014	Dolder et al.
L13	Plasma (0.5 mL)	LSD Iso-LSD Nor-LSD 2-oxo-3-OH-LSD	LSD-d₃	SPE	HPLC-QTRAP- MS/MS (MRM)	ESI	10	2017	Steuer et al.
L14	Blood (0.5 mL)	LSD	LSD-d ₃	LLE	UPLC-MS/MS (MRM)	ESI	94	2013	Berg et al.

Table S7.2. Summarization of modern gas chromatographic methods coupled with mass spectrometry for determination of LSD in biological samples

No	Biological sample	Determined substances ^a	Internal standard	Sample preparation	Method	Mode	LOQ [pg/mL] ^b	Year	Reference
G1	Serum (1 mL)	LSD	LSD-d₃	Derivatization with MSTFA	GC-MS (SIM)	EI	100	1997	Musshoff et al.
G2	Urine (4 mL)	LSD 2-oxo-3-OH-LSD	lampa Oh-lampa	SPE and derivatization with BSTFA	GC-MS/MS (SRM)	CI	10	1999	Reuschel et al.
G3	Urine (4 mL) Blood Plasma (5 mL)	LSD Iso-LSD Nor-LSD	LAMPA	LLE and derivatization with BSTFA or TFAI	GC-MS/MS (MRM)	CI	10	1992	Nelson et al.
G4	Blood (2 mL)	LSD	LAMPA	SPE	GC-IT-MS	CI	20	2003	Libong et al.

^a LSD analogs, ^b the lowest limit of quantification in the group of determined LSD analogs; LOQ – limit of quantification, GC – gas chromatography, MS/MS – tandem mass spectrometry, IT – ion trap, SIM – single ion monitoring, SRM – selected reaction monitoring, MRM – multiple reaction monitoring, SPE – solid-phase extraction, LLE – liquid liquid extraction, MSTFA – N-Methyl-N-(trimethylsilyl)-trifluoroacetamide, TFAI – trifluoroacetylimidazole; BSTFA – *N*,*O*-bis(trimethylsilyl)trifluoroacetamide Favretto, D., Frison, G., Maietti, S., Ferrara, S.D. LC-ESI-MS/MS on an ion trap for the determination of LSD, iso-LSD, nor-LSD and 2-oxo-3hydroxy-LSD in blood, urine and vitreous humor. *Int J Legal Med*. **2007**, 121(4):259-65. doi: 10.1007/s00414-006-0078-x.

Dolder, P.C., Liechti, M.E., Rentsch, K.M. Development and validation of an LC-MS/MS method to quantify lysergic acid diethylamide (LSD), iso-LSD, 2-oxo-3-hydroxy-LSD, and nor-LSD and identify novel metabolites in plasma samples in a controlled clinical trial. *J Clin Lab Anal.* **2018**, 32(2):e22265. doi: 10.1002/jcla.22265.

Dolder, P.C., Liechti, M.E., Rentsch, K.M. Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases. *Anal Bioanal Chem.* **2015** 407(6), 1577-84. doi: 10.1007/s00216-014-8388-1.

Steuer, A.E., Poetzsch, M., Stock, L., Eisenbeiss, L., Schmid, Y., Liechti, M.E., Kraemer, T. Development and validation of an ultrafast and sensitive microflow liquid chromatography-tandem mass spectrometry (MFLC-MS/MS) method for quantification of LSD and its metabolites in plasma and application to a controlled LSD administration study in humans. *Drug Test Anal.* **2017**, 9(5), 788-797. doi: 10.1002/dta.2042.

Berg, T., Jørgenrud, B., Strand, D.H. Determination of buprenorphine, fentanyl and LSD in whole blood by UPLC-MS-MS. *J Anal Toxicol.* **2013**, 37(3), 159-65. doi: 10.1093/jat/bkt005.

Musshoff, F., Daldrup, T. Gas chromatographic/mass spectrometric determination of lysergic acid diethylamide (LSD) in serum samples. *Forensic Sci Int.* **1997**, 88(2), 133-40. doi: 10.1016/s0379-0738(97)00063-7.

Reuschel, S.A., Percey, S.E., Liu, S., Eades, D.M., Foltz, R.L. Quantitative determination of LSD and a major metabolite, 2-oxo-3hydroxy-LSD, in human urine by solid-phase extraction and gas chromatography-tandem mass spectrometry. *J Anal Toxicol.* **1999**, 23(5), 306-12. doi: 10.1093/jat/23.5.306.

Nelson, C.C., Foltz, R.L. Determination of lysergic acid diethylamide (LSD), iso-LSD, and N-demethyl-LSD in body fluids by gas chromatography/tandem mass spectrometry. *Anal Chem.* **1992**, 64(14), 1578-85. doi: 10.1021/ac00038a014.

Libong, D., Bouchonnet, S., Ricordel, I. A selective and sensitive method for quantitation of lysergic acid diethylamide (LSD) in whole blood by gas chromatography-ion trap tandem mass spectrometry. *J Anal Toxicol.* **2003**, 27(1), 24-9. doi: 10.1093/jat/27.1.24.

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 350 °C; dealvation line temperature, 350 °C; dealvation flow flow, 10 L/min; frequent block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

+)[366.2175] CE:	10.0-50.0		C,H ₁₄ NO -7.81ppm	С ₁₂ Н ₉ N• -0.36ppm	-1.01ppm	C ₁₅ H, -1.48 -1.48 -1.54ppm 208.0992	ст ₁₇ Н 5N2 0.77 -0.77 -0.75 -0.37 226 -0.332pm -0.332pm	7N2O md 9 1334	C ₂₀ H ₂₃ -0.22p	.N ₂ O ₂ ppm 53	oʻ -0.46ppm 366.2172		
			128.1060	167.0729			1 III .	293.1277	323.1522	351.	1970 367.61	48	
20	40	100	120 14	0 160	180 2	00 220	240 260		300 320	340	360 38	0 400	420
	Experimenta m/z	l Intensity	Molecular Formula	Charge	Predicted m/z	∆ ppm	Experimental m/z	Intensity	Molecular Formula	Charge	Predicted m/z	Δ ppm	
	366.2174	1	C22H27NaO2	[M+H]*	366.2176	-0.46	208.0992	12074	C14H12N5	+[H+]	208.0995	-1.54	
	351.1970	1149		I	I	I	208.0755	8781	C ₁₄ H ₁₀ NO	+	208.0757	-1.11	
	323.1753	0669	C ₂₀ H ₂₃ N ₂ O ₂	+	323.1754	-0.22	207.0917	10815	C ₁₄ H ₁₁ N ₂	ŧ.	207.0917	-0.05	
	293.1278 281.1665	1299 676	C ₁₈ H ₁₇ N ₂ O ₂ -	+ 1	293.1285 -	-2.39 -	197.1071 194.0960	5245 1741	C ₁₃ H ₁₃ N ₂ C1413N	÷_ ∓_ +	197.1073 194 0964	-1.02	
	265.1334	37176	C ₁₇ H ₁₇ N ₂ O	*[H+]	265.1335	-0.72	192.0810	4121	C14H10N	• +	192.0808	1.35	
	251.1173	2252	C ₁₆ H ₁₅ N ₂ O	-	251.1179	-2.47	182.0969	1885	C ₁₃ H ₁₂ N	+[H+]	182.0964	2.42	
	249.1006	2168	I	I	I	I	180.0810	4706	C ₁₃ H ₁₀ N	ţ [+]	180.0808	1.06	
	239.1178	4176	C ₁₅ H ₁₅ N ₂ O	+[H+]	239.1179	-0.34	167.0729	1219	C ₁₂ H ₉ N•	+	167.0730	-0.36	
	223.1226	27549	C ₁₅ H ₁₅ N ₂	+[H+]	223.1230	-1.48	154.0648	772	C ₁₁ H ₈ N	+	154.0651	-2.47	
	221.1071	4161	C ₁₅ H ₁₃ N ₂	+[H+]	221.1073	-1.09	128.1060	1385	C ₇ H ₁₄ NO	± ₩	128.1070	-7.81	

AL-LAD Molecular Formula: C₂₂H₂₇N₃O Formula Weight: 349.5

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

Molecular Formula: C₂₂H₂₇N₃O Formula Weight: 349.5 [M+H]*: 350.222689 Da

Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm	Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm
z/m		Formula		z/m		z/m		Formula		z/m	
350.2226	I	C ₂₂ H ₂₇ N ₃ O	+[H+H]	349.2154	-0.37	193.0758	14964	C ₁₃ H ₉ N ₂	+[н+]	193.0760	-1.09
309.1837	64399	C ₁₉ H ₂₃ N ₃ O•	+[H+]	309.1836	0.32	182.0835	8278	C ₁₂ H ₁₀ N ₂ •	+[H+]	182.0839	-1.81
281.1654	2124	C ₁₈ H ₂₁ N ₂ O	+	281.1648	1.96	180.0810	5845	$C_{13}H_{10}N$	+[H+]	180.0810	0.94
249.1398	766	I	I	I	I	167.0727	982	C ₁₂ H ₉ N•	+	167.0730	-1.62
209.1067	3870	C ₁₄ H ₁₃ N ₂	+[H+]	209.1073	-2.77	154.0654	1515	C ₁₁ H ₈ N	+	154.0651	1.95
208.0994	47757	C ₁₄ H ₁₂ N ₂ •	*[H+]	208.0995	-0.38	128.1080	881	I	I	I	I
207.0918	29030	$C_{14}H_{11}N_2$	+[H+]	207.0917	0.77						

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and of obligion (DDA) function. DDA data were acquired in the range 40–500 m/z

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to the parameters were fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

QqQ-M5/M5: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to the parameters were fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

Molecular Formula: C₂₀H₂₃N₃O₂ Formula Weight: 337.4

LSM-775

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to the parameters were fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

Molecular Formula: C₂₁H₂₅N₃O Formula Weight: 335.5

I S7

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to the parameters were fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

QqQ-M5/M5: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: =10, =20, =35, =40 and =50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to the parameters were fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

QqQ-M5/M5: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm	Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm
m/z		Formula		m/z		m/z		Formula		m/z	
394.2487	I	C ₂₄ H ₃₁ N ₃ O ₂	*[H+H]	394.2489	-0.48	208.0996	11976	C ₁₄ H ₁₂ N ₂ •	+[H+]	208.0995	0.38
379.2247	696	C ₂₃ H ₂₉ N ₃ O ₂ •	+[H+]	379.2254	-1.93	208.0755	8371	C ₁₄ H ₁₀ NO	+	208.0757	-1.01
351.2058	6703	C ₂₂ H ₂₇ N ₂ O ₂	+	351.2067	-2.51	207.0914	10153	$C_{14}H_{11}N_2$	+[H+]	207.0917	-1.55
321.1585	1110	I	I	I	I	197.1077	5027	C ₁₃ H ₁₃ N ₂	+[H+]	197.1073	2.08
293.1644	38637	C ₁₉ H ₂₁ N ₂ O	+[H+]	293.1648	-1.54	194.0970	1840	$C_{14}H_{12}N$	+	194.0964	2.99
281.1653	1251	C ₁₈ H ₂₁ N ₂ O	+	281.1648	1.74	192.0802	3614	$C_{14}H_{10}N$	+	192.0808	-3.23
277.1329	1537	$C_{18}H_{17}N_2O$	+[H+]	277.1335	-2.42	182.0967	2489	C ₁₃ H ₁₂ N	+[H+]	182.0964	1.32
267.1493	3759	$C_{17}H_{19}N_2O$	+[H+]	267.1492	0.49	180.0806	4141	$C_{13}H_{10}N$	+[H+]	180.0808	-0.89
251.1172	1966	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-2.75	167.0745	1095	I	I	I	I
223.1228	31814	C ₁₅ H ₁₅ N ₂	+[H+]	223.1230	-0.99	154.0635	579	I	I	I	I
221.1071	3865	C ₁₅ H ₁₃ N ₂	+[H+]	221.1073	-1.0	128.1060	1835	I	I	I	I

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and of objoint collision engles from – 10 V to – 50 V;

QqQ-M5/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: =10, =20, =35, =40 and =50 V).

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and of objoint collision engles from – 10 V to – 50 V;

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).

Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm	Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm
z/m		Formula		z/m		z/m		Formula		m/z	
392.2330	I	C ₂₄ H ₂₉ N ₃ O ₂	+[H+M]	392.2333	-0.71	208.1000	7398	C ₁₄ H ₁₂ N ₂ •	+[H+]	208.0995	2.45
377.2097	658	C ₂₃ H ₂₇ N ₃ O ₂ •	+[H+]	377.2098	-0.35	208.0755	6770	C ₁₄ H ₁₀ NO	+	208.0757	-0.87
349.1901	5713	C ₂₂ H ₂₅ N ₂ O ₂	+	349.1911	-2.84	207.0911	5825	$C_{14}H_{11}N_2$	+[H+]	207.0917	-2.85
319.1450	1011	C ₂₀ H ₁₉ N ₂ O ₂	+	319.1441	2.73	197.1073	3604	C ₁₃ H ₁₃ N ₂	+[H+]	197.1073	-0.05
291.1492	37975	C ₁₉ H ₁₉ N ₂ O	+[H+]	291.1492	0.03	194.0957	1653	C ₁₄ H ₁₂ N	+	194.0964	-3.56
281.1657	1526	C ₁₈ H ₂₁ N ₂ O	+	281.1648	2.88	192.0806	3052	C ₁₄ H ₁₀ N	+	192.0808	-0.99
275.1177	1713	C ₁₈ H ₁₅ N ₂ O	+[H+]	275.1179	-0.80	182.0967	1758	C ₁₃ H ₁₂ N	+[H+]	182.0964	1.26
265.1336	3707	$C_{17}H_{17}N_{2}O$	+[H+]	265.1335	0.15	180.0810	3031	$C_{13}H_{10}N$	+[H+]	180.0808	1.22
251.1178	2768	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-0.48	167.0736	969	C ₁₂ H ₉ N•	+	167.0730	4.01
223.1226	30382	$C_{15}H_{15}N_{2}$	+[H+]	223.1230	-1.75	128.1071	1062	C ₇ H ₁₄ NO	+[H+]	128.1070	0.78
221.1077	3478	C ₁₅ H ₁₃ N ₂	+[H+]	221.1073	1.90						

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 Vto -50 V;

QqQ-MS/MS: Detection of the investigated compounds was achieved with the use of a triple quadrupole mass spectrometer (QqQ, Shimadzu 8060, Kyoto, Japan) in positive mode. The spectrometer was equipped with an electrospray ionization (ESI) sourceThe following MS parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; heat block temperature, 350 °C; and drying gas flow, 10 L/min. Fragmentation MS/MS spectra were acquired by conducting a product ion scan experiment at five collision energies (CE: -10, -20, -35, -40 and -50 V).
1P-LSD Molecular Formula: C ₂₃ Formula Weight: 3 Formula Weight	H ₂₉ N ₃ O ₂ 79.5 4 Da	-25-25-25 -0.58ppm 380.2329	 	 			C ₂₁ H ₂₅ N ₂ O ₂	1.33ppm 337.1906	346 365.2071 381.5843	340 360 380 40
360.2331] CE:100-500 26.9H ₃ M ₂ C ₁ ,H ₃ M ₁ 0.05pm 128.1070 124.0055 12	1P-LSD Molecular Formula: C ₂₃ Formula Weight: 37 [M+H]*: 380.233255			C ₁₈ H ₁₉ N ₂ O -1.33ppm	279.1488			C ₁₈ H ₂₁ N ₂ O0.64ppm	281.1647 337.16	0 280 300 320 300 320
3602331] CE:10.0-50.0 0.08pm 2.1,1,1,0 0.08pm 2.34ppm 180.0806 1.28.107 1.20 1.40 1.60 1.80					C ₁₅ H ₁₅ N ₂ -0.22ppm	223.1229	C ₁₄ H ₁₁ N ₂ 0.63ppm C ₁₆ H ₁₇ N ₅ C	207.0918 -1.74ppm -1.74ppm -1.252 -1.24		200 220 240 260
360.2331] CE:10.0-50.0 0.036ptm 128.107							C ₁₃ H ₁₀ N	C ₁₁ H ₈ N -1.22ppm 2.34ppm 180.0806	154.0655	140 160 180
380.2331] CE:10.0-50.0								С ₇ Н ₁₄ NO 0.08ppm	128.1070	80 100 120
-		·)[380.2331] CE:10.0-50.0								20 40 60

Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm	Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm
z/m		Formula		z/m		z/m		Formula		z/m	
380.2330	I	C ₂₃ H ₂₉ N ₃ O ₂	+[H+H]	380.2333	-0.58	208.0995	10338	C ₁₄ H ₁₂ N ₂ •	+[H+]	208.0995	-0.24
365.2071	729	I	I	I	I	208.0754	9731	$C_{14}H_{10}NO$	+	208.0757	-1.30
337.1906	7447	C ₂₁ H ₂₅ N ₂ O ₂	+	337.1911	-1.34	207.0918	11433	$C_{14}H_{11}N_2$	+[H+]	207.0917	0.63
307.1447	628	C ₁₉ H ₁₉ N ₂ O ₂	+	307.1441	2.08	197.1062	4938	I	I	I	I
281.1647	1090	C ₁₈ H ₂₁ N ₂ O	+	281.1648	-0.64	194.0966	2044	$C_{14}H_{12}N$	+	194.0964	0.62
279.1488	37251	C ₁₈ H ₁₉ N ₂ O	+[H+]	279.1492	-1.33	192.0808	3908	$C_{14}H_{10}N$	+	192.0808	0.05
263.1173	1573	C ₁₇ H ₁₅ N ₂ O	+[H+]	263.1179	-2.32	182.0958	2497	C ₁₃ H ₁₂ N	+[H+]	182.0958	-3.73
253.1331	4386	C ₁₆ H ₁₇ N ₂ O	+[H+]	253.1335	-1.74	180.0806	5063	C ₁₃ H ₁₀ N	+[H+]	180.0808	-1.22
251.1184	2641	C ₁₆ H ₁₅ N ₂ O	+	251.1179	1.91	167.0709	896	I	I	I	I
223.1229	29424	C ₁₅ H ₁₅ N ₂	+[H+]	223.1230	-0.22	154.0655	725	$C_{11}H_8N$	+	154.0651	2.34
221.1082	3999	$C_{15}H_{13}N_{2}$	+[H+]	221.1073	3.89	128.1070	2156	C ₇ H ₁₄ NO	+[H+]	128.1070	0.08

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min. MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and collision energies from – 10 V to – 50 V.

										420
	23 ¹¹ 29 ¹¹ 302 0.61ppm	180.23 <i>2</i> 9							381.5765	380 400
AiPLA nula: C ₂₃ H ₂₉ N ₃ O ₂ Veight: 379.5 80.233254 Da	, , , , , , , , , , , , , , , , , , ,	'n						C ₂₁ H ₂₅ N ₂ O ₂ -0.0600m	3237.1910 323.1982 365.2098	320 340 360
1P-N Aolecular Forr Formula W [M+H]*: 38					⁵ H ₁₉ N ₂ O 68ppm	9.1490			307.1432	280 300 280 300
2					-0.6	279		$C_{16}H_{17}N_2O$	0.63ppm 253.1337	240 260
						C ₁₅ H ₁₅ N ₂ -2.15ppm	223.1225			220
							C ₁₄ H ₁₂ N ₂ •	-1.15ppm 208.0993		30 200
								C ₁₃ H ₁₀ N	0.89ppm 180.0809	
								C-H, NO	3.98ppm 128.1075	120 140
										80 100
	0.0-50.0									- - 09 - 0
)[380.2331] CE:1									20 4
	2:MSMS(+)	8.0e4 _	7.0e4 =	6.0e4 =	5.0e4 =	4.0e4	3.0e4	2.0e4 =	1.0e4	0.0e0

Experimental m/z 380.2330 380.2330 387.1910 307.1432 281.1628 279.1490 253.1187 253.1187 253.1187	Intensity - 5841 875 1045 38013 1709 3005	Molecular Formula C ₂₃ H ₂₅ N ₃ O ₂ C ₂₂ H ₂₅ N ₃ O ₂ C ₂₁ H ₂₅ N ₂ O ₂ C ₁₃ H ₁₅ N ₂ O ₂ C ₁₃ H ₁₅ N ₂ O C ₁₇ H ₁₅ N ₂ O C ₁₇ H ₁₅ N ₂ O	Charge [A H] ⁺ [+H] ⁺ [+H] ⁺	Predicted m/z 380.2333 365.2098 337.1911 307.1441 - 279.1492 263.1179 253.1179	Δ ppm -0.61 -0.03 -0.06 -2.290 2.24 2.24 0.63	Experimental m/z 208.0993 208.0916 197.1066 194.0967 192.0810 132.0810 130.0800	Intensity 13144 7865 9854 9854 3657 2152 2152 3268 2273 2273 2273	Molecular Formula G ₁ 4H ₁₀ NO G ₁ 4H ₁₀ NO G ₁ 4H ₁₀ NO G ₁ 4H ₁₂ N C ₁ 4H ₁₂ N C ₁ 4H ₁₂ N	Charge $(H_{+})^{+}$ (H_{+})	Predicted m/z 208.0995 208.0757 208.0757 207.0917 197.1073 194.0964 192.0808 182.0964 180.0808	Δ ppm -1.15 -1.54 -0.48 -0.48 -3.65 -1.24 1.24 1.48
251.1181	1969		<u></u> +	251.1179	0.84	167.0726	1543	C12H9N	<u></u> +	167.0730	-1.98
223.1225 221 1075	28469 2415	C ₁₅ H ₁₅ N ₂	*[H+]	223.1230	-2.15	154.0659	487	C ₁₁ H ₈ N	+ 1	154.0651	4.93
c/01.122	54.ID	C ₁₅ H ₁₃ N ₂		221.1U/5	0.86	C/UL.821	1 5YU			128.1U/U	3.40

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min. MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and collision energies from – 10 V to – 50 V.

Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm	Experimental	Intensity	Molecular	Charge	Predicted	∆ ppm
z/m		Formula		m/z		z/m		Formula		z/m	
408.2643	I	C ₂₅ H ₃₃ N ₃ O ₂	+[H+M]	408.2646	-0.56	208.0758	8679	C ₁₄ H ₁₀ NO	+	208.0757	0.63
393.2433	1126	I	I	I	I	207.0911	8107	$C_{14}H_{11}N_2$	+[H+]	207.0917	-2.80
365.2214	6585	C ₂₃ H ₂₉ N ₂ O ₂	+	365.2224	-2.66	197.1075	4416	$C_{13}H_{13}N_2$	+[H+]	197.1073	0.71
335.1758	753	C ₂₁ H ₂₃ N ₂ O ₂	+	335.1754	1.07	194.0969	2032	$C_{14}H_{12}N$	+	194.0964	2.37
307.1801	38068	C ₂₀ H ₂₃ N ₂ O	*[H+]	307.1805	-1.34	192.0808	4387	$C_{14}H_{10}N$	+	192.0808	0.31
291.1493	799	C ₁₉ H ₁₉ N ₂ O	*[H+]	291.1492	0.24	182.0970	2321	C ₁₃ H ₁₂ N	+[H+]	182.0964	3.24
281.1648	5399	C ₁₈ H ₂₁ N ₂ O	+[H+]/+	281.1648	-0.25	180.0803	3538	C ₁₃ H ₁₀ N	+[H+]	180.0808	-2.55
251.1175	2976	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-1.59	167.0732	939	C ₁₂ H ₉ N•	+	167.0730	1.56
223.1227	30788	C ₁₅ H ₁₅ N ₂	*[H+]	223.1230	-1.39	154.0656	421	C ₁₁ H ₈ N	+	154.0651	2.73
221.1075	2858	C ₁₅ H ₁₃ N ₂	+[H+]	221.1073	0.91	128.1062	1459	C ₇ H ₁₄ NO	+[H+]	128.1070	-6.56
208.0997	11598	C ₁₄ H ₁₂ N ₂ •	+[H+]	208.0995	0.87						

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 10 L/min; interface temperature, 250 °C; desolvation line temperature, 200 °C; interface voltage (+), 4.50 kV; heat block temperature, 350 °C; and drying gas flow, 10 L/min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40–500 m/z and of obligion (DDA) function. DDA data were acquired in the range 40–500 m/z

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

-1.85 -1.90

222.1152 221.1073

 $\stackrel{\scriptscriptstyle +}{\Xi}\stackrel{\scriptscriptstyle +}{\Xi}\stackrel{\scriptscriptstyle +}{\Xi}$

C₁₅H₁₃N₂

221.1069

0.21 1.09 1.03

359.0754 329.0284 387.0941

Ŧ

C19H22N3OBr C18H20N2OBr C₁₆H₁₄N₂OBr

3722 789 872

387.0942 359.0757 329.0287 301.0335 286.0103 285.0013

257.9912 222.1147 207.0918 167.0723 128.1069

 $C_{14}H_{11}N_2$ C₁₂H₉N• C₇H₁₄NO

11651 517 1310

-0.07 1.15 -3.23

286.0100 285.0022

± + + + +

301.0335

÷ H+

 $C_{15}H_{14}N_2Br$ C₁₄H₁₁N₂Br• C₁₄H₁₀N₂Br

18343 2837 2258

+ +

 $C_{15}H_{14}N_2^{\bullet}$

207.0917 167.0730

-0.43

257.9913

+

0.39 -4.07 -0.78

128.1070

+ ±

QTOF-MS/MS: The QTOF Shimadzu 9050 (Kyoto, Japan) spectrometer was equipped with an electrospray ionization (ESI) source. The following QTOF parameters were fixed: nebulizing gas flow, 31 //min; interface to fixed: nebulizing tass flow, 10 //min; interface temperature, 250 ·C; desolvation line temperature, 200 ·C; interface voltage (+), 4.50 kV; heat block temperature, 350 ·C; and diving gas flow, 10 //min; MS/MS spectra for all substances were acquired by conducting datadependent acquisition (DDA) function. DDA data were acquired in the range 40-500 m/z addiving gas flow, 10 //min = 00 vto -50 V.

0.62 -0.33 2.03 -1.45

182.0964 166.0651

±±±±

+

C₁₃H₁₂N

3455 1336 1688 1122

184.0756

I

I

166.0649

182.0968

-2.87 -1.37

265.0972 255.1128

+ H

C₁₆H₁₃N₂O₂ C₁₅H₁₅N₂O₂

2865 3062 555 3912 600

295.1458

356.1965 338.1854 313.1546 265.0964 255.1125

C₁₂H₈N

-2.52

222.0550 209.1073 184.0757

0.04

237.1022

Ŧ

+

C₁₅H₁₃N₂O C₁₄H₈NO₂ C₁₄H₁₃N₂ C₁₂H₁₀NO

15947 5993

237.1023 209.1075

-0.62

356.19665 313.1547 338.1863

[H+H]

±+ + I

C₂₀H₂₄N₃O₂ C₁₈H₂₁N₂O₃ C20H25N3O3

222.0544

-2.54 -0.26

S9. Fragmentation of LSD analogs with the use of QTOF-MS/MS.

Table S9.1. Fragment ions of ALD-52 (1A-LSD)

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	366.2174	-	72 Da 0 $+$ $+$ $15 Da+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	C ₂₂ H ₂₇ N ₃ O ₂	[M+H]⁺	366.2176	-0.46
1.	351.1970	1149	72 Da (+)	_	_	_	_
2.	323.1753	6990	72 Da (43 Da (43 Da (43 Da (43 Da) (43 Da)	C ₂₀ H ₂₃ N ₂ O ₂	+	323.1754	-0.22
3.	293.1278	1299	$\begin{array}{c} O_{t}^{t} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $	$C_{18}H_{17}N_2O_2$	+	293.1285	-2.39
4.	281.1665	676	T2 Da $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	-	-	-	-
5.	265.1334	37176	$H_{H_{1}}^{15 \text{ Da}}$ H_{H	C ₁₇ H ₁₇ N ₂ O	[+H] ⁺	265.1335	-0.72
6.	251.1173	2252	$\begin{array}{c} O_{i}^{\dagger} & \text{15 Da} \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ Molecular \ Formula: \ C_{16}H_{15}N_2O^{+} \\ Monoisotopic \ Mass: \ \textbf{251.11789 Da} \end{array}$	$C_{16}H_{15}N_2O$	+	251.1179	-2.47

7.	249.1006	2168	Molecular Formula: C ₁₆ H ₁₃ N ₂ O ⁺ Monoisotopic Mass: 249.102239 Da	-	_	-	-
8.	239.1178	4176	$\begin{array}{c} \qquad \qquad$	C ₁₅ H ₁₅ N ₂ O	[+H] ⁺	239.1179	-0.34
9.	223.1226	27549	$\begin{matrix} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-1.48
10.	221.1071	4161	$\label{eq:hardenergy} \begin{array}{c} & \overset{15}{} \text{Da} \\ & & \overset{15}{} \overset{\text{Da}}{} \\ & & & \overset{15}{} \overset{\text{Da}}{} \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & &$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	-1.09
11.	208.0992	12074	$\label{eq:hole} \begin{array}{c} & \qquad $	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-1.54
12.	208.0755	8781	$\label{eq:rescaled} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{14}H_{10}NO$	+	208.0757	-1.11
13.	207.0917	10815	$\begin{array}{c} & \qquad $	$C_{14}H_{11}N_2$	[+H] ⁺	207.0917	-0.05
14.	197.1071	5245	H^{+} Molecular Formula: C ₁₃ H ₁₃ N ₂ ⁺	$C_{13}H_{13}N_2$	[+H]+	197.1073	-1.02

Monoisotopic Mass: 197.107325 Da

15.	194.0960	1741	$\label{eq:holecular} \begin{array}{c} & \\ & \\ & \\ & \mbox{Molecular Formula: } C_{14}H_{12}N^* \\ & \mbox{Monoisotopic Mass: } 194.096426 Da \end{array}$	$C_{14}H_{12}N$	+	194.0964	-1.44
16.	192.0810	4121	$\label{eq:holecular} \begin{split} & \overleftarrow{N} H^+\\ & Molecular Formula: C_{14}H_{10}N^+\\ & Monoisotopic Mass: \mathbf{192.080776 Da} \end{split}$	$C_{14}H_{10}N$	+	192.0808	1.35
17.	182.0969	1885	$\label{eq:holecular} \begin{split} & \overleftarrow{NH}_2^+\\ & Molecular \ Formula: \ C_{13}H_{12}N^+\\ & Monoisotopic \ Mass: \ \textbf{182.096426} \ Da \end{split}$	C ₁₃ H ₁₂ N	[+H]+	182.0964	2.42
18.	180.0810	4706	$\label{eq:hole} \begin{array}{c} & \overleftarrow{NH}_2^+\\ & Molecular \ Formula \colon C_{13}H_{10}N^+\\ & Monoisotopic \ Mass \colon \textbf{180.080776} \ Da \end{array}$	C ₁₃ H ₁₀ N	[+H]+	180.0808	1.06
19.	167.0729	1219	H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	-0.36
20.	154.0648	772	Holecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	-2.47
21.	128.1060	1385	HO Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]+	128.1070	-7.81

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	350.2226	-	72 Da H H H H H H H H	C ₂₂ H ₂₇ N ₃ O	[M+H]⁺	349.2154	-0.37
1.	309.1837	64399	T2 Da V V V V V V V V	C ₁₉ H ₂₃ N ₃ O•	[+H]⁺	309.1836	0.32
2.	281.1654	2124	72 Da $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	C ₁₈ H ₂₁ N ₂ O	÷	281.1648	1.96
3.	249.1398	766	41 Da \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	-	-	_	_
4.	209.1067	3870	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ $	$C_{14}H_{13}N_2$	[+H] ⁺	209.1073	-2.77
5.	208.0994	47757	$\label{eq:hole} \begin{array}{c} & \underset{NH}{ } \\ & \underset{NH}{ } \\ \\ & \text{Molecular Formula: } C_{14}H_{12}N_2^+ \\ & \text{Monoisotopic Mass: } \textbf{208.0995 Da} \end{array}$	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-0.38
6.	207.0918	29030	$\label{eq:holecular} \begin{split} & \qquad \qquad$	$C_{14}H_{11}N_2$	[+H]+	207.0917	0.77
7.	193.0758	14964	$\label{eq:rescaled} \begin{array}{c} & \underset{NH_{+}}{}\\ & \underset{NH}{}\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{13}H_9N_2$	[+H] ⁺	193.0760	-1.09

Table S9.2. Fragment ions of AL-LAD

8.	182.0835	8278	$\label{eq:head} \begin{array}{c} & \\ & \\ & \\ & \\ & Molecular \ Formula: \ C_{13}H_{12}N^* \\ & Monoisotopic \ Mass: \ \textbf{182.096426 Da} \end{array}$	C ₁₂ H ₁₀ N ₂ •	[+H]+	182.0839	-1.81
9.	180.0810	5845	$\label{eq:hole} \begin{array}{c} & \overleftarrow{NH}_2^+\\ & Molecular \;Formula:\;C_{13}H_{10}N^+\\ & Monoisotopic\;Mass:\;180.080776\;Da \end{array}$	$C_{13}H_{10}N$	[+H]+	180.0810	0.94
10.	167.0727	982	$\overbrace{NH}^{+\bullet}$ Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	-1.62
11.	154.0654	1515	$\begin{tabular}{l}{llllllllllllllllllllllllllllllll$	$C_{11}H_8N$	+	154.0651	1.95
12.	128.1080	881	HO $(1000000000000000000000000000000000000$	_	_	-	_

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	324.2070	-	T2 Da $N \rightarrow + + + + + + + + + + + + + + + + + + $	C ₂₀ H ₂₅ N ₃ O	[M+H]*	324.2070	-0.25
1.	309.1835	825	$\begin{array}{c} \textbf{72 Da} \\ \textbf{N} \\ \textbf{V} $	C ₁₉ H ₂₃ N ₃ O•	[+H] ⁺	309.1836	-0.13
2.	281.1644	5084	T2 Da \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	C ₁₈ H ₂₁ N ₂ O	+	281.1648	-1.67
3.	251.1181	2257	$\begin{array}{c} O_{F}^{\dagger} & 15 \text{ Da} \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \\ Molecular Formula: C_{16}H_{15}N_2O^{+} \\ Monoisotopic Mass: \textbf{251.11789 Da} \end{array}$	$C_{16}H_{15}N_2O$	+	251.1179	0.96
4.	223.1228	42597	$\label{eq:head} \begin{array}{c} & H \\ \end{array} \begin{array}{c} & 15 \text{ Da} \\ & H \\ & H \\ & H \\ & H_{15} \text{ N}_2^+ \\ & \text{Monoisotopic Mass: } \textbf{223.122975 Da} \end{array}$	$C_{15}H_{15}N_2$	[+H]+	223.1230	-0.85
5.	221.1077	4924	$\begin{array}{c} & \overset{15 \text{ Da}}{\underset{N+}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }$ Molecular Formula: C_{15} H_{13} H_{	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	1.81
6.	208.0995	14968	$\label{eq:holecular} \begin{split} & \overbrace{NH}^{NH_{+}} \\ & \overbrace{NH}^{Molecular Formula:} C_{14}H_{12}N_{2}^{+} \\ & Monoisotopic Mass: \ \textbf{208.0995 Da} \end{split}$	C ₁₄ H ₁₂ N ₂ •	[+H]⁺	208.0995	-0.14

Table S9.3. Fragment ions of LAMPA

7.	208.0758	8647	$\begin{array}{c} 0^+\\ \downarrow \downarrow \\ \downarrow \downarrow \\ NH \end{array}$ Molecular Formula: C14H10NO ⁺ Monoisotopic Mass: 208.07569 Da	C ₁₄ H ₁₀ NO	+	208.0757	0.34
8.	207.0917	20585	$\label{eq:hole} \begin{array}{c} & \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \\ & \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \\ & H \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{14}H_{11}N_2$	[+H]+	207.0917	0.15
9.	197.1073	7040	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]⁺	197.1073	-0.05
10.	194.0959	2392	Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	-2.63
11.	192.0810	5844	$\begin{array}{c} & \qquad $	$C_{14}H_{10}N$	+	192.0808	1.25
12.	182.0964	2033	$\label{eq:rescaled} \begin{split} & \overbrace{NH_2^+} \\ & Molecular Formula: C_{13}H_{12}N^+ \\ & Monoisotopic Mass: \mathbf{182.096426 Da} \end{split}$	$C_{13}H_{12}N$	[+H]*	182.0964	0.06
13.	180.0805	8748	$\label{eq:rescaled} \begin{split} & \overbrace{NH_2^+} \\ & \text{Molecular Formula: } C_{13}H_{10}N^* \\ & \text{Monoisotopic Mass: } \textbf{180.080776 Da} \end{split}$	$C_{13}H_{10}N$	[+H]⁺	180.0808	-1.50
14.	167.0732	3609	H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H9N•	+	167.0730	1.56
15.	154.0657	1434	$\overset{+}{\underset{NH}{}}$ Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	3.57
16.	128.1069	1731	HO , NH ⁺ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]⁺	128.1070	-1.02

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	324.2069	-	T2 Da $F = (1 + 1)^{15}$ Da $F = (1 + 1)^{$	C ₂₀ H ₂₅ N ₃ O	[M+H] ⁺	324.2070	-0.56
1.	309.1821	498	T2 Da $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow	-	-	_	_
2.	281.1653	2304	T2 Da $\downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	C ₁₈ H ₂₁ N ₂ O	+	281.1648	1.46
3.	251.1178	741	$\begin{array}{c} O_{H_{15}}^{+} \\ & \downarrow \\ & H \end{array} \\ \hline Molecular Formula: C_{16}H_{15}N_2O^{+} \\ & Monoisotopic Mass: \textbf{251.11789 Da} \end{array}$	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-0.52
4.	223.1226	9564	$\begin{matrix} H \\ + H \\ + H \\ + H \\ + H \\ H \\ H \\ H \\$	$C_{15}H_{15}N_2$	+	223.1230	-1.70
5.	221.1074	912	$\label{eq:hardenergy} \begin{array}{c} & \overset{15}{\text{Da}} \\ & \overset{15}{D$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	0.36
6.	208.0994	4316	$\label{eq:holescale} \begin{split} & \overbrace{NH}^{NH_{+}} \\ & \overbrace{NH}^{Molecular Formula: C_{14H_{12}N_{2}^{*}} \\ & Monoisotopic Mass: \textbf{208.0995 Da} \end{split}$	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-0.38
7.	208.0758	2246	0^+ $\downarrow \downarrow \downarrow$ NH Molecular Formula: C ₁₄ H ₁₀ NO ⁺ Monoisotopic Mass: 208.07569 Da	C ₁₄ H ₁₀ NO	+	208.0757	0.48

8.	207.0911	5088	$\label{eq:hole} \begin{array}{c} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{14}H_{11}N_2$	[+H]*	207.0917	-2.80
9.	197.1076	2493	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	1.47
10.	194.0965	825	Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	0.36
11.	192.0804	1581	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{14}H_{10}N$	+	192.0808	-1.98
12.	182.0827	1136	$\label{eq:holecular} \begin{split} & \overbrace{NH_2^+} \\ & Molecular Formula: C_{13}H_{12}N^+ \\ & Monoisotopic Mass: \mathbf{182.096426 Da} \end{split}$	_	_	_	_
13.	180.0808	2884	$\label{eq:holecular} \begin{split} & \overbrace{NH_2^+} \\ & Molecular \ Formula: \ C_{13}H_{10}N^+ \\ & Monoisotopic \ Mass: \ \textbf{180.080776} \ Da \end{split}$	$C_{13}H_{10}N$	[+H]+	180.0808	0.0
14.	167.0725	735	$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	C₁₂H ₉ N•	+	167.0730	-2.69
15.	154.0638	484	$\overset{+}{\underset{NH}{}}$ Molecular Formula: C_{11}H_8N^+ Monoisotopic Mass: 154.065126 Da	-	-	_	_

No	Experimentalm/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	338.1862	-	$\begin{array}{c} \textbf{S6 Da} & \textbf{J5 Da} \\ \hline \textbf{F} & \textbf{F} & \textbf{J5 Da} \\ \hline \textbf{F} & \textbf{F} & \textbf{F} \\ \hline \textbf{F} \\ \textbf{F} & \textbf{F} \\ \hline \textbf{F} \\$	C ₂₀ H ₂₃ N ₃ O ₂	[M+H]+	338.1863	-0.33
1.	323.1627	2011	86 Da \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	C ₁₉ H ₂₁ N ₃ O ₂ •	[+H]⁺	323.1628	-0.53
2.	295.1436	6431	86 Da $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₁₉ N ₂ O ₂ + Monoisotopic Mass: 295.144104 Da	C ₁₈ H ₁₉ N ₂ O ₂	+	295.1441	-1.86
3.	251.1174	2441	$\begin{array}{c} O_{F}^{\dagger} & 15 \text{ Da} \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ NH \end{array}$ Molecular Formula: $C_{16}H_{15}N_2O^{*}$ Monoisotopic Mass: 251.11789 Da	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-2.07
4.	223.1225	34108	$\begin{array}{c} & \overset{H}{\underset{N+}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}{\overset{15 \text{ Da}}}{\overset{15 \text{ Da}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$C_{15}H_{15}N_2$	[+H]*	223.1230	-1.93
5.	221.1070	2893	$H^{15 \text{ Da}}_{\text{N+}}$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	-1.67
6.	208.0996	12610	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₂ N ₂ •	[+H]⁺	208.0995	0.29
7.	208.0752	10511	$\bigcup_{i=1}^{N+1} \bigcup_{i=1}^{N+1} $	C ₁₄ H ₁₀ NO	+	208.0757	-2.21

Table S9.5. Fragment ions of LSM-775

Monoisotopic Mass: **208.07569 Da**

8.	207.0915	14996	$\label{eq:hole} \begin{array}{c} & \qquad $	$C_{14}H_{11}N_2$	[+H]+	207.0917	-0.68
9.	197.1076	7508	\overbrace{V}^{+}_{NH}	$C_{13}H_{13}N_2$	[+H]*	197.1073	1.42
10.	194.0964	1957	H Molecular Formula: C ₁₄ H ₁₂ N* Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	0.0
11.	192.0804	5097	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{14}H_{10}N$	+	192.0808	-2.14
12.	182.0962	2034	$\label{eq:head} \underbrace{\begin{subarray}{c} $V_{NH_2^+}$\\ Molecular Formula: $C_{13}H_{12}N^*$\\ Monoisotopic Mass: $182.096426 Da \end{subarray} \end{subarray}$	$C_{13}H_{12}N$	[+H]*	182.0964	-1.04
13.	182.0833	3442	$\begin{array}{c} & \overset{NH^{+^{\bullet}}}{\underset{NH}{\overset{VH^{+}}{\overset{H_{10}}{\overset{N_{2}^{*}}{\overset{NH^{NH}}{\overset{NH^{NH}}}}} \\ & Molecular \ Formula: \ C_{12}H_{10}N_{2}^{*} \\ & Monoisotopic \ Mass: \ 182.08385 \ \mathbf{Da} \end{array}$	C ₁₂ H ₁₀ N ₂ •	[+H]*	182.0839	-3.13
14.	180.0804	7331	$\label{eq:head} \begin{array}{c} & \overleftarrow{N}H_2^+\\ \\ & \text{Molecular Formula: }C_{13}H_{10}N^+\\ \\ & \text{Monoisotopic Mass: } \mathbf{180.080776Da} \end{array}$	$C_{13}H_{10}N$	[+H]⁺	180.0808	-2.39
15.	167.0725	2292	$\begin{array}{c} & & & \\ & & & \\ & & & \\$	C ₁₂ H ₉ N∙	+	167.0730	-2.81
16.	154.0660	1171	$\begin{array}{c} & \stackrel{+}{\underset{NH}{\overset{+}{}}} \\ & \text{Molecular Formula: } C_{11}H_8N^+ \\ & \text{Monoisotopic Mass: } \mathbf{154.065126 Da} \end{array}$	$C_{11}H_8N$	+	154.0651	5.52
17.	142.0873	904	Molecular Formula: C ₇ H ₁₂ NO ₂ ⁺ Monoisotopic Mass: 142.086255 Da	-	-	-	_
18.	88.0752	832	$Molecular Formula: C_4H_{10}NO^+$ Monoisotopic Mass: 88.07569 Da	C4H10NO	[+H]⁺	88.0757	-5.11

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	۵ ppm
Precursor Ion	336.2068	-	^{84 Da} f = f + f + f + f + f + f + f + f + f +	C ₂₁ H ₂₅ N ₃ O	[M+H]⁺	336.2070	-0.68
1.	321.1829	492	S4 Da \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	C ₂₀ H ₂₃ N ₃ O•	[+H] ⁺	321.1836	-1.93
2.	293.1649	4579	$\begin{array}{c} \overset{\text{84 Da}}{\underset{\text{NH}}{}} \\ \overset{\text{B4 Da}}{\underset{\text{NH}}{}} \\ \overset{\text{B4 Da}}{\underset{\text{NH}}{}} \\ \end{array}$	C ₁₉ H ₂₁ N ₂ O	+	293.1648	0.03
3.	267.1370	2002	$\begin{array}{c} H_2 N_{+^{\bullet}} \\ H_2 N_{+^{\bullet}} \\ \downarrow \downarrow \downarrow \\ NH \end{array}$ Molecular Formula: $C_{16} H_{17} N_3 O^+$ Monoisotopic Mass: 267.136614 Da	C ₁₆ H ₁₇ N ₃ O•	[+H]+	267.1366	1.31
4.	251.1177	5292	$O_{H_{15}}^{+} O_{N_{15}}^{+} O_{N_{15}}^{+}$ $O_{H_{15}}^{+} O_{N_{15}}^{+} O_$	$C_{16}H_{15}N_2O$	+	251.1179	-0.96
5.	223.1228	29322	$\label{eq:head} \begin{array}{c} & H \\ \\ & H \\ & H \\ & H_{15} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{15}H_{15}N_2$	[+H]+	223.1230	-0.72
6.	221.1072	7093	$\begin{array}{c} & \overset{15}{\downarrow} \text{Da} \\ & 15$	$C_{15}H_{13}N_2$	[+H]+	221.1073	-0.77

7.	208.0995	10522	$\label{eq:holecular} \begin{split} & \overbrace{NH}_{+} \bullet \\ & \overbrace{NH} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-0.10
8.	208.0753	7079	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{14}H_{10}NO$	+	208.0757	-1.78
9.	207.0921	14125	$\label{eq:hole} \begin{array}{c} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{14}H_{11}N_2$	[+H]+	207.0917	1.84
10.	197.1070	9037	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	-1.62
11.	194.0962	2091	$\label{eq:head} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{14}H_{12}N$	+	194.0964	-0.98
12.	192.0809	3611	H Molecular Formula: C ₁₄ H ₁₀ N ⁺ Monoisotopic Mass: 192.080776 Da	$C_{14}H_{10}N$	+	192.0808	0.42
13.	182.0970	1242	$\label{eq:rescaled} \begin{split} & \overbrace{NH_2^+} \\ & Molecular Formula: C_{13}H_{12}N^+ \\ & Monoisotopic Mass: \mathbf{182.096426 Da} \end{split}$	$C_{13}H_{12}N$	[+H]+	182.0964	3.35
14.	182.0840	3034	$\label{eq:head} \begin{array}{c} & \underset{NH}{\overset{NH^{+^{\bullet}}}{\underset{NH}{}}} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	C ₁₂ H ₁₀ N ₂ •	[+H]⁺	182.0839	0.82
15.	180.0806	5516	$\label{eq:hole} \underbrace{V_{NH_2^+}}_{Nh_2}$ Molecular Formula: C_{13}H_{10}N^+ Monoisotopic Mass: 180.080776 Da	$C_{13}H_{10}N$	[+H]*	180.0808	-1.06
16.	167.0727	2450	$\overbrace{NH}^{+\bullet}$ Molecular Formula: C ₁₂ H ₉ N ⁺	C ₁₂ H ₉ N•	+	167.0730	-1.38

Monoisotopic Mass: **167.072951 Da**

17.	154.0652	3163	$\overrightarrow{F}_{NH}^{+}$ Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	0.33
18.	140.1068	7287	Molecular Formula: C ₈ H ₁₄ NO ⁺ Monoisotopic Mass: 140.10699 Da	C ₈ H ₁₄ NO	[+H] ⁺	140.1070	-1.50
19.	98.0602	2273	Molecular Formula: C₅H ₈ NO ⁺ Monoisotopic Mass: 98.06004 Da	C₅H ₈ NO	[+H]⁺	98.0600	1.33

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	324.2069	-	T2 Da H H H H H H H H	$C_{20}H_{25}N_3O$	[M+H]⁺	324.2070	-0.40
1.	309.1832	529	72 Da N ++++++++++++++++++++++++++++++++++++	C ₁₉ H ₂₃ N ₃ O•	[+H] ⁺	309.1836	-1.29
2.	281.1638	5953	72 Da \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	-	-	_	_
3.	251.1170	2414	$\begin{array}{c} O_{IS}^{\dagger} \\ \downarrow \\ \downarrow \\ \downarrow \\ NH \end{array} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	C ₁₆ H ₁₅ N ₂ O	÷	251.1179	-3.39
4.	223.1226	42759	$\begin{array}{c} H \\ H_{15} N_2^* \\ Molecular \ Formula: \ C_{15} H_{15} N_2^* \\ Monoisotopic \ Mass: \ \textbf{223.122975 Da} \end{array}$	$C_{15}H_{15}N_2$	[+H]+	223.1230	-1.61
5.	221.1072	3824	$\begin{array}{c} & \overset{H}{\underset{N+}{\overset{15}{\overset{Da}{}}}} \\ & \overset{H}{\underset{NH}{\overset{15}{\overset{Da}{}}}} \\ & \overset{H}{\underset{NH}{\overset{15}{\overset{Da}{}}} \\ & \overset{H}{\underset{NH}{\overset{15}{}}} \\ & \overset{H}{\underset{NH}{\overset{15}{}} \\ & \overset{H}{\underset{NH}{\overset{15}{\overset{H}{\overset{15}{}}}} \\ & \overset{H}{\underset{NH}{\overset{15}{\overset{H}{\overset{15}{\overset{H}{\overset{15}{\overset{H}{\overset{15}{\overset{H}{\overset{15}{\overset{H}{\overset{15}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	-0.50
6.	208.0996	15828	$\label{eq:hole} \begin{array}{c} & \underset{NH_{12}}{} NH_{1} \bullet \\ & \underset{NH}{} \\ \\ & \\ Molecular \ Formula: \ C_{14}H_{12}N_2^{*} \\ & \\ Monoisotopic \ Mass: \ \textbf{208.0995 Da} \end{array}$	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	0.24
7.	208.0755	7244	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₀ NO	+	208.0757	-0.87

Page 60

8.	207.0916	20540	$\label{eq:hole} \begin{array}{c} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{14}H_{11}N_2$	[+H]+	207.0917	-0.58
9.	197.1071	5122	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]*	197.1073	-1.22
10.	194.0964	2448	Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	0.0
11.	192.0811	5399	$\label{eq:holecular} \begin{split} & \qquad \qquad$	C ₁₄ H ₁₀ N	+	192.0808	1.46
12.	182.0962	2565	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{13}H_{12}N$	[+H]⁺	182.0964	-1.48
13.	180.0807	7459	$\label{eq:holecular} \begin{split} & \overleftarrow{NH^+_2}\\ & Molecular\;Formula:\;C_{13H_{10}N^+}\\ & Monoisotopic\;Mass:\;180.080776\;Da \end{split}$	$C_{13}H_{10}N$	[+H]+	180.0808	-0.67
14.	167.0724	3397	$\overbrace{NH}^{+\bullet}$ Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C ₁₂ H ₉ N∙	+	167.0730	-3.35
15.	154.0650	1464	$\overrightarrow{\text{NH}}^+$ Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	-0.65
16.	128.1064	1401	HO NH ⁺ ₂ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]+	128.1070	-4.29

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	394.2487	_	72 Da $friction formula: C_{24}H_{32}N_3O_2^*$ Molecular Formula: C24H32N3O2* Monoisotopic Mass: 394.248904 Da	C ₂₄ H ₃₁ N ₃ O ₂	[M+H]*	394.2489	-0.48
1.	379.2247	969	72 Da () () () () () () () () () ()	C ₂₃ H ₂₉ N ₃ O ₂ •	[+H] ⁺	379.2254	-1.93
2.	351.2058	6703	72 Da f f f f f f f f	C22H27N2O2	+	351.2067	-2.51
3.	321.1585	1110	$\begin{array}{c} O_{1}^{t} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $	-	_	_	_
4.	293.1644	38637	$\begin{array}{c} \underset{0}{\overset{H}{\underset{0}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$	$C_{19}H_{21}N_2O$	[+H]⁺	293.1648	-1.54
5.	281.1653	1251	72 Da $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ NH Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	C ₁₈ H ₂₁ N ₂ O	+	281.1648	1.74
6.	277.1329	1537	$\begin{array}{c} \qquad \qquad$	C ₁₈ H ₁₇ N ₂ O	[+H]*	277.1335	-2.42

7.	267.1493	3759	$\begin{array}{c} {\underset{N}{}} {\underset{N}{}} \\ {\underset{N}{}} \\ Molecular Formula: C_{17}H_{19}N_2O^{+} \\ Monoisotopic Mass: \textbf{267.14919 Da} \end{array}$	C ₁₇ H ₁₉ N ₂ O	[+H] ⁺	267.1492	0.49
8.	251.1172	1966	$\begin{array}{c} O_{i}^{\dagger} \\ \downarrow \\ \downarrow \\ NH \end{array} \begin{array}{c} 15 \text{ Da} \\ I_{i} \\ S_{i} \\ S_{i}$	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-2.75
9.	223.1228	31814	$\begin{matrix} H \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-0.99
10.	221.1071	3865	$\label{eq:hardenergy} \begin{array}{c} & \overset{15}{} \text{Da} \\ & \overset{15}{} \overset{\text{Da}}{} \\ & \overset{15}{} \overset{15}{} \overset{\text{Da}}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} $	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	-1.0
11.	208.0996	11976	$\label{eq:holescale} \begin{split} & \overbrace{NH}^{NH_{+\bullet}} \\ & \overbrace{NH}^{Molecular Formula: C_{14}H_{12}N_{2}^{+}} \\ & Monoisotopic Mass: \textbf{208.0995 Da} \end{split}$	C ₁₄ H ₁₂ N ₂ •	[+H]⁺	208.0995	0.38
12.	208.0755	8371	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{14}H_{10}NO$	+	208.0757	-1.01
13.	207.0914	10153	$\begin{array}{c} \qquad \qquad$	$C_{14}H_{11}N_2$	[+H]+	207.0917	-1.55
14.	197.1077	5027	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]⁺	197.1073	2.08
15.	194.0970	1840	H Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	2.99

16.	192.0802	3614	$\label{eq:holecular} \begin{split} & \\ & \\ & \\ & \text{Molecular Formula: } C_{14} H_{10} N^{*} \\ & \text{Monoisotopic Mass: } \textbf{192.080776 Da} \end{split}$	C14H10N	+	192.0808	-3.23
17.	182.0967	2489	$\label{eq:holecular} \underbrace{\begin{subarray}{c} \begin{subarray}{c} \$	$C_{13}H_{12}N$	[+H]+	182.0964	1.32
18.	180.0806	4141	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	C ₁₃ H ₁₀ N	[+H]+	180.0808	-0.89
19.	167.0745	1095	H → → → → → → NH Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	_	_	-	-
20.	154.0635	579	+ ↓ NH Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	_	-	-	-
21.	128.1060	1835	HO NH ₂ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	_	_	_	_

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	392.2330	-	^{72 Da} (+) (+	C ₂₄ H ₃₀ N ₃ O ₂	[M+H]⁺	392.2333	-0.59
1.	377.2092	1114	72 Da 0 69 Da 69 Da Molecular Formula: C ₂₃ H ₂₇ N ₃ O ₂ * Monoisotopic Mass: 377.209779 Da	C ₂₃ H ₂₇ N ₃ O ₂ •	[+H] ⁺	377.2098	-1.56
2.	349.1906	7027	72 Da 69 Da Molecular Formula: C ₂₂ H ₂₅ N ₂ O ₂ * Monoisotopic Mass: 349.191054 Da	C ₂₂ H ₂₅ N ₂ O ₂	+	349.1911	-1.20
3.	319.1426	1090	$\begin{array}{c} O_{i}^{t} \\ \leftarrow \\ \downarrow \\ \downarrow$	_	_	_	_
4.	291.1489	39237	H H H H H H H H H H H H H H H H H H H	C ₁₉ H ₁₉ N ₂ O	[+H] ⁺	291.1492	-1.03
5.	281.1634	1990	T2 Da + + + + + + + +	-	_	_	_
6.	275.1176	1759	Molecular Formula: CHN.O*	C ₁₈ H ₁₅ N ₂ O	[+H]+	275.1179	-1.05

Molecular Formula: C₁₈H₁₅N₂O⁺ Monoisotopic Mass: **275.11789 Da**

7.	265.1342	4587	$\begin{array}{c} \qquad \qquad$	C ₁₇ H ₁₇ N ₂ O	[+H] ⁺	265.1335	2.30
8.	251.1181	2774	$O_{\downarrow}^{\dagger} \downarrow \downarrow$	C ₁₆ H ₁₅ N ₂ O	+	251.1179	0.72
9.	223.1225	31801	$\begin{array}{c} \underset{N+}{\overset{H}{\underset{N+}{\overset{15}{\underset{N+}{\underset{N}{N$	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-2.29
10.	221.1074	2572	$\begin{matrix} H \\ \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \\ NH \end{matrix}$ Molecular Formula: C ₁₅ H ₁₃ N ₂ * Monoisotopic Mass: 221.107325 Da	C ₁₅ H ₁₃ N ₂	[+H] ⁺	221.1073	0.41
11.	208.0993	8670	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-0.96
12.	208.0756	7731	$\label{eq:rescaled} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₀ NO	÷	208.0757	-0.58
13.	207.0915	5990	$\begin{array}{c} \qquad \qquad$	$C_{14}H_{11}N_2$	[+H]+	207.0917	-0.63
14.	197.1073	5792	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	-0.36
15.	194.0963	2235	Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	÷	194.0964	-0.82

16.	192.0802	3089	$\label{eq:hole} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	C14H10N	+	192.0808	-2.81
17.	182.0966	2023	$\label{eq:holecular} \underbrace{Formula:}_{NH_2}^H_2 \\ Molecular \ Formula: \ C_{13}H_{12}N^* \\ Monoisotopic \ Mass: \ \textbf{182.096426} \ Da \\ \end{aligned}$	$C_{13}H_{12}N$	[+H]+	182.0964	1.15
18.	180.0807	3327	$\label{eq:hole} \begin{array}{c} & \overleftarrow{NH}_2^+\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$C_{13}H_{10}N$	[+H]+	180.0808	-0.22
19.	167.0724	664	+• NH Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	-3.23
20.	128.1060	1485	HO VH2 Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	_	_	_	_

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	∆ ppm
Precursor Ion	392.2330	-	72 Da N H H H H H H H H H H H H H	C ₂₄ H ₂₉ N ₃ O ₂	[M+H]⁺	392.2333	-0.71
1.	377.2097	658	72 Da $14 \text{ Formula: } C_{23}H_{27}N_3O_2^*$ Monoisotopic Mass: 377.209779 Da	C ₂₃ H ₂₇ N ₃ O ₂ •	[+H] ⁺	377.2098	-0.35
2.	349.1901	5713	72 Da N H H H H H H H H H H H H H	$C_{22}H_{25}N_2O_2$	+	349.1911	-2.84
3.	319.1450	1011	$\begin{array}{c} O_{1}^{t} \\ \leftarrow \\ \leftarrow \\ \downarrow \\ \leftarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$	$C_{20}H_{19}N_2O_2$	+	319.1441	2.73
4.	291.1492	37975	$\begin{array}{c} & \underset{l}{}{}{}{}{}{}{}{$	$C_{19}H_{19}N_2O$	[+H] ⁺	291.1492	0.03
5.	281.1657	1526	T2 Da $\downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	C ₁₈ H ₂₁ N ₂ O	+	281.1648	2.88
6.	275.1177	1713	NH ⁺ ₂	C ₁₈ H ₁₅ N ₂ O	[+H] ⁺	275.1179	-0.80

Molecular Formula: C₁₈H₁₅N₂O⁺ Monoisotopic Mass: **275.11789 Da**

7.	265.1336	3707	$\begin{array}{c} \qquad \qquad$	C ₁₇ H ₁₇ N ₂ O	[+H] ⁺	265.1335	0.15
8.	251.1178	2768	$\begin{array}{c} O_{I}^{\dagger} & \text{15 Da} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-0.48
9.	223.1226	30382	$\begin{matrix} H \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-1.75
10.	221.1077	3478	$\label{eq:hardenergy} \begin{array}{c} & \overset{15}{} \text{Da} \\ & \overset{+}{\underset{NH}{}} \\ \\ & \text{Molecular Formula: } C_{15} H_{13} N_2^+ \\ & \text{Monoisotopic Mass: } \textbf{221.107325 Da} \end{array}$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	1.90
11.	208.1000	7398	$\label{eq:holescale} \begin{split} & \overbrace{NH}^{NH_{+}} \\ & \overbrace{NH}^{Molecular Formula: C_{14H_{12}N_2^+} \\ & Monoisotopic Mass: \textbf{208.0995 Da} \end{split}$	C ₁₄ H ₁₂ N ₂ •	[+H]⁺	208.0995	2.45
12.	208.0755	6770	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₀ NO	+	208.0757	-0.87
13.	207.0911	5825	$\label{eq:hole} \begin{array}{c} & \qquad $	$C_{14}H_{11}N_2$	[+H]⁺	207.0917	-2.85
14.	197.1073	3604	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	-0.05
15.	194.0957	1653	Molecular Formula: C ₁₄ H ₁₂ N ⁺ Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	-3.56

16.	192.0806	3052	$\label{eq:holecular} \begin{split} & \overleftarrow{NH}\\ & Molecular Formula: C_{14}H_{10}N^{*}\\ & Monoisotopic Mass: \mathbf{192.080776 Da} \end{split}$	C ₁₄ H ₁₀ N	+	192.0808	-0.99
17.	182.0967	1758	$\label{eq:holecular} \begin{split} & \overleftarrow{NH}_2^+\\ & Molecular\;Formula\colonC_{13}H_{12}N^+\\ & Monoisotopic\;Mass\colon182.096426\;Da \end{split}$	$C_{13}H_{12}N$	[+H]+	182.0964	1.26
18.	180.0810	3031	$\label{eq:holecular} \begin{split} & \overleftarrow{NH}_2^+\\ & Molecular \ Formula: \ C_{13}H_{10}N^+\\ & Monoisotopic \ Mass: \ \textbf{180.080776} \ Da \end{split}$	$C_{13}H_{10}N$	[+H]+	180.0808	1.22
19.	167.0736	696	H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	4.01
20.	128.1071	1062	HO \checkmark NH ₂ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]⁺	128.1070	0.78

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	۵ ppm
Precursor Ion	380.2330	-	$\begin{array}{c} 72 \text{ D}_{a} \\ \hline \\ 72 \text{ D}_{a} \\ \hline \\ 72 \text{ D}_{a} \\ \hline \\ 71 $	C ₂₃ H ₂₉ N ₃ O ₂	[M+H]*	380.2333	-0.58
1.	365.2071	729	72 Da $f(x) = (x + 1)^{2}$ $f(x) = (x + 1)^{2}$ f(x) = (x + 1	_	_	_	_
2.	337.1906	7447	72 Da f f f f f f f f f f	C ₂₁ H ₂₅ N ₂ O ₂	÷	337.1911	-1.34
3.	307.1447	628	$\begin{array}{c} O_{t}^{t} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $	$C_{19}H_{19}N_2O_2$	÷	307.1441	2.08
4.	281.1647	1090	72 Da $\downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	$C_{18}H_{21}N_2O$	+	281.1648	-0.64
5.	279.1488	37251	H H H H H H H H H H H H H H	C ₁₈ H ₁₉ N ₂ O	[+H]+	279.1492	-1.33
6.	263.1173	1573	Molecular Formula: CHN-O ⁺	$C_{17}H_{15}N_2O$	[+H]+	263.1179	-2.32

Table S9.11. Fragment ions of 1P-LSD

Molecular Formula: $C_{17}H_{15}N_2O^+$ Monoisotopic Mass: **263.11789 Da**

7.	253.1331	4386	$\begin{array}{c} \qquad \qquad$	C ₁₆ H ₁₇ N ₂ O	[+H] ⁺	253.1335	-1.74
8.	251.1184	2641	$O_{IJ}^{+} + O_{IJ}^{+} D_{IJ}^{-} D_{IJ}^{-}$ $O_{IJ}^{+} + O_{IJ}^{-} + O_{IJ}^{-} D_{IJ}^{-} + O_{IJ}^{-} + O_{IJ}^{-$	$C_{16}H_{15}N_2O$	+	251.1179	1.91
9.	223.1229	29424	$\begin{array}{c} \underset{N+}{\overset{H}{}} \overset{15 \text{ Da}}{}\\ \underset{N+}{}\\ \underset{N+}{} \underset{N+}{}\\ \underset{N+}{} \underset{N+}{\overset{N+}{} \underset{N+}{} \underset{N+}{} \underset{N+}{} \underset{N+}{\overset{N+}{} \underset{N+}{} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} \underset{N+}{\overset{N+}} N+$	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-0.22
10.	221.1082	3999	$H = \begin{array}{c} 15 \text{ Da} \\ \downarrow \downarrow \downarrow \\ NH \end{array}$ Molecular Formula: $C_{15}H_{13}N_2^+$ Monoisotopic Mass: 221.107325 Da	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	3.89
11.	208.0995	10338	$\label{eq:hole} \begin{array}{c} & \underset{NH}{ } \\ & \underset{NH}{ } \\ \\ & \\ Molecular \ Formula: \ C_{14}H_{12}N_2^+ \\ \\ & \\ Monoisotopic \ Mass: \ \textbf{208.0995 Da} \end{array}$	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-0.24
12.	208.0754	9731	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₀ NO	+	208.0757	-1.30
13.	207.0918	11433	$\begin{array}{c} \qquad \qquad$	$C_{14}H_{11}N_2$	[+H]+	207.0917	0.63
14.	197.1062	4938	$\begin{array}{c} \qquad \qquad$	_	_	_	-
15.	194.0966	2044	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{14}H_{12}N$	+	194.0964	0.62
16.	192.0808	3908	$\label{eq:constraint} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{14}H_{10}N$	+	192.0808	0.05
-----	----------	------	--	-----------------	-------	----------	-------
17.	182.0958	2497	$\label{eq:hole} \underbrace{\begin{subarray}{c} \begin{subarray}{c} \begin$	$C_{13}H_{12}N$	[+H]+	182.0958	-3.73
18.	180.0806	5063	Molecular Formula: C ₁₃ H ₁₀ N ⁺ Monoisotopic Mass: 180.080776 Da	$C_{13}H_{10}N$	[+H]+	180.0808	-1.22
19.	167.0709	896	H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	_	_	_	_
20.	154.0655	725	$\begin{array}{c} & \stackrel{+}{\underset{NH}{\overset{+}{\underset{NH}{}}}} \\ & \text{Molecular Formula: } C_{11}H_8N^+ \\ & \text{Monoisotopic Mass: } \textbf{154.065126 Da} \end{array}$	$C_{11}H_8N$	+	154.0651	2.34
21.	128.1070	2156	HO HO_2^+ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]+	128.1070	0.08

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	∆ ppm
Precursor Ion	380.2330	-	72 Da H H H H H H H H H H H H H	C23H29N3O2	[M+H]⁺	380.2333	-0.61
1.	365.2098	373	72 Da 0 57 Da Molecular Formula: C ₂₂ H ₂₇ N ₃ O ₂ * Monoisotopic Mass: 365.209779 Da	C ₂₂ H ₂₇ N ₃ O ₂ •	[+H] ⁺	365.2098	-0.03
2.	337.1910	5841	72 Da N S7 Da 57 Da Molecular Formula: C ₂₁ H ₂₅ N ₂ O ₂ * Monoisotopic Mass: 337.191054 Da	C ₂₁ H ₂₅ N ₂ O ₂	+	337.1911	-0.06
3.	307.1432	875	$\begin{array}{c} O^{\dagger}_{F} \\ + & F_{F} \\ + & F_{F} \\ + & F_{F} \\ + & F_{F} \\ \end{array}$ Molecular Formula: $C_{19}H_{19}N_2O_2^*$ Monoisotopic Mass: 307.144104 Da	C19H19N2O2	+	307.1441	-2.90
4.	281.1628	1045	72 Da $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Molecular Formula: C ₁₈ H ₂₁ N ₂ O ⁺ Monoisotopic Mass: 281.16484 Da	-	_	_	_
5.	279.1490	38013	H F F F F T Da 57 Da Molecular Formula: C ₁₈ H ₁₉ N ₂ O ⁺ Monoisotopic Mass: 279.14919 Da	C ₁₈ H ₁₉ N ₂ O	[+H] ⁺	279.1492	-0.68
6.	263.1185	1709	Molecular Formula: CHN. O*	C ₁₇ H ₁₅ N ₂ O	[+H] ⁺	263.1179	2.24

Table S9.12. Fragment ions of 1P-MiPLA

Molecular Formula: C₁₇H₁₅N₂O⁺ Monoisotopic Mass: **263.11789 Da**

7.	253.1337	3095	$\begin{array}{c} \qquad \qquad$	C ₁₆ H ₁₇ N ₂ O	(+H) ⁺	253.1335	0.63
8.	251.1181	1969	$\begin{array}{c} O_{+}^{+} & 15 \text{ Da} \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \\ \text{Molecular Formula: } C_{16}\text{H}_{15}\text{N}_2\text{O}^{+} \\ \text{Monoisotopic Mass: } \textbf{251.11789 Da} \end{array}$	C ₁₆ H ₁₅ N ₂ O	+	251.1179	0.84
9.	223.1225	28469	$\begin{array}{c} \underset{N+}{\overset{H}{\underset{N+}{\overset{+}{\underset{N+}{\overset{+}{\underset{N+}{\overset{+}{\underset{N+}{\overset{+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N+}{\underset{N+}{\overset{+}{\underset{N}{N$	$C_{15}H_{15}N_2$	(+H)+	223.1230	-2.15
10.	221.1075	3415	$\label{eq:hardenergy} \begin{array}{c} & \overset{15}{} \text{Da} \\ & & \overset{15}{} \overset{\text{Da}}{} \\ & \overset{15}{} \overset{\text{Da}}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} & \overset{15}{} \\ & \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} \overset{15}{} \overset{15}{} & \overset{15}{} & \overset{15}{} & \overset{15}{} \overset{15}{} & \overset{15}{} & \overset$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	0.86
11.	208.0993	13144	$\label{eq:holescale} \begin{array}{c} & \underset{NH}{ } \\ & \underset{NH}{ } \\ \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	C ₁₄ H ₁₂ N ₂ •	[+H]+	208.0995	-1.15
12.	208.0754	7865	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₀ NO	+	208.0757	-1.54
13.	207.0916	9854	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{14}H_{11}N_2$	[+H]+	207.0917	-0.48
14.	197.1066	3657	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	-3.65
15.	194.0967	2152	Molecular Formula: C ₁₄ H ₁₂ N* Monoisotopic Mass: 194.096426 Da	$C_{14}H_{12}N$	+	194.0964	1.24

16.	192.0810	3268	$\label{eq:constraint} \begin{array}{c} & \\ & \\ \hline & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C14H10N	+	192.0808	1.09
17.	182.0967	2273	$\label{eq:hole} \underbrace{\begin{subarray}{c} \begin{subarray}{c} \begin$	$C_{13}H_{12}N$	[+H]+	182.0964	1.48
18.	180.0809	4118	$\label{eq:hole} \begin{array}{c} & \overleftarrow{NH}_2^+\\ & Molecular \ Formula: \ C_{13}H_{10}N^+\\ & Monoisotopic \ Mass: \ \textbf{180.080776} \ Da \end{array}$	$C_{13}H_{10}N$	[+H]+	180.0808	0.89
19.	167.0726	1543	H H H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	-1.98
20.	154.0659	487	H Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	4.93
21.	128.1075	1590	HO NH ₂ Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C ₇ H ₁₄ NO	[+H]+	128.1070	3.98

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	408.2643	_	72 Da (H) (H) (H) (H) (H) (H) (H) (H)	C ₂₅ H ₃₃ N ₃ O ₂	[M+H]⁺	408.2646	-0.56
1.	393.2433	1126	72 Da V V V V V V V V V V V V V	-	-	_	_
2.	365.2214	6585	72 Da	C ₂₃ H ₂₉ N ₂ O ₂	÷	365.2224	-2.66
3.	335.1758	753	$\begin{array}{c} O_{t}^{t} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ $	C ₂₁ H ₂₃ N ₂ O ₂	+	335.1754	1.07
4.	307.1801	38068	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	C ₂₀ H ₂₃ N ₂ O	[+H] ⁺	307.1805	-1.34
5.	291.1493	799	Molecular Formula: C ₁₉ H ₁₉ N ₂ O ⁺ Monoisotopic Mass: 291.14919 Da	C ₁₉ H ₁₉ N ₂ O	[+H] ⁺	291.1492	0.24

Table S9.13. Fragment ions of 1V-LSD

6.	281.1648	5399	The provided HTML representation of the second state of the secon	C ₁₈ H ₂₁ N2O	+/ [+H]+	281.1648	-0.25
7.	251.1175	2976	$\begin{array}{c} O_{I}^{+} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	C ₁₆ H ₁₅ N ₂ O	+	251.1179	-1.59
8.	223.1227	30788	$\begin{matrix} H \\ H \\ H \\ H \end{matrix} \\ \begin{matrix} 15 \text{ Da} \\ H \\ \begin{matrix} 15 \\ 15 \\ H \\ H \end{matrix}$	$C_{15}H_{15}N_2$	[+H] ⁺	223.1230	-1.39
9.	221.1075	2858	$\begin{array}{c} & \overset{H}{}^{15 \text{ Da}} \\ & \overset{H}{}^{+} \\ & \overset{+}{} \\ & \overset{+}{} \\ & {}{} \\ & {}{}{}{} \\ & {}{}{}{}{}{}{$	$C_{15}H_{13}N_2$	[+H] ⁺	221.1073	0.91
10.	208.0997	11598	$\label{eq:hole} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	C ₁₄ H ₁₂ N ₂ •	[+H]*	208.0995	0.87
11.	208.0758	8679	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ $	C ₁₄ H ₁₀ NO	+	208.0757	0.63
12.	207.0911	8107	$\begin{array}{c} & {}}{}{}{}{}{}{}{}}{}{}{}{}{}{}{}{}{}{}{}{}}{}{}}{}{}{}{}}{}{}}{}{}}{}{}}{}}{}{}}{}{}{}}{}{}}{}}{}}{}{}{}{}}{}}{}}{}{}{}{}}{}{}{}{}}{}{}{}{}}{}{}{}{}{}{}{}}{\overset$	$C_{14}H_{11}N_2$	[+H]*	207.0917	-2.80

Monoisotopic Mass: 207.091675 Da

13.	197.1075	4416	$\begin{array}{c} \qquad \qquad$	$C_{13}H_{13}N_2$	[+H]+	197.1073	0.71
14.	194.0969	2032	$\begin{array}{c} & \qquad $	$C_{14}H_{12}N$	+	194.0964	2.37
15.	192.0808	4387	$\begin{array}{c} & \\ & & \\ & \\ & \\ & \\ & & \\ & & \\ & & \\ & & & \\ & & & & & & & & & & & & & & & & & & &$	$C_{14}H_{10}N$	+	192.0808	0.31
16.	182.0970	2321	$\label{eq:holecular} \begin{split} & \overleftarrow{NH_2^+}\\ & Molecular\;Formula:\;C_{13H_{12}N^+}\\ & Monoisotopic\;Mass:\;182.096426\;Da \end{split}$	$C_{13}H_{12}N$	[+H]+	182.0964	3.24
17.	180.0803	3538	$\label{eq:holecular} \begin{split} & \overleftarrow{NH_2^+}\\ & Molecular \ Formula: \ C_{13}H_{10}N^+\\ & Monoisotopic \ Mass: \ \textbf{180.080776} \ Da \end{split}$	$C_{13}H_{10}N$	[+H]+	180.0808	-2.55
18.	167.0732	939	H Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N⁺	+	167.0730	1.56
19.	154.0656	421	H Molecular Formula: C ₁₁ H ₈ N ⁺ Monoisotopic Mass: 154.065126 Da	$C_{11}H_8N$	+	154.0651	2.73
20.	128.1062	1459	HO HO HO Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C ₇ H ₁₄ NO	[+H]+	128.1070	-6.56

No	Experimental <u>m/z</u>	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	402.1174	-	72 Da H H H H H H H H	$C_{20}H_{24}N_3OBr$	[M+H] ⁺	402.1176	-0.30
1.	387.0942	789	72 Da (+)	C19H22N3OBr•	[+H]*	387.0941	0.21
2.	359.0757	3722	72 Da (+)	$C_{18}H_{20}N_2OBr$	÷	359.0754	1.09
3.	329.0287	872	$\begin{array}{c} O_{t}^{\dagger} & 15 \text{ Da} \\ \hline & & & \\ \hline \\ \hline$	$C_{16}H_{14}N_2OBr$	+	329.0284	1.03
4.	301.0335	18343	$H \xrightarrow{15 \text{ Da}} 80 \text{ Da}$ $H \xrightarrow{15 \text{ Da}} 80 \text{ Da}$ $H \xrightarrow{Br} 80 \text{ Da}$ Molecular Formula: C ₁₅ H ₁₄ BrN ₂ * Monoisotopic Mass: 301.03348 Da	$C_{15}H_{14}N_2Br$	[+H]⁺	301.0335	-0.07
5.	286.0103	2837	NH+• NH NH Molecular Formula: C ₁₄ H ₁₁ BrN ₂ * Monoisotopic Mass: 286.010005 Da	C ₁₄ H ₁₁ N₂Br•	[+H]*	286.0100	1.15
6.	285.0013	2258	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	$C_{14}H_{10}N_2Br$	[+H]*	285.0022	-3.23
7.	275.0174	3777	Molecular Formula: C ₁₃ H ₁₂ BrN ₂ *	$C_{13}H_{12}N_2Br$	[+H]⁺	275.0178	-1.78

Table S9.14. Fragment ions of 2-Bromo-LSD

Monoisotopic Mass: **275.01783 Da**

8.	257.9912	2328	$\begin{array}{c} & \stackrel{+}{\underset{NH}{}} \\ & \stackrel{BT}{\underset{NH}{}} \\ & Molecular \ Formula: \ C_{13}H_9BrN^* \\ & Monoisotopic \ Mass: \ \textbf{257.991281 Da} \end{array}$	C₁₃H ₉ NBr	+	257.9913	-0.43
9.	222.1147	8471	$\label{eq:hardenergy} \begin{array}{c} H \\ H \\ H \\ H \\ H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C ₁₅ H ₁₄ N ₂ •	[+H]+	222.1152	-1.85
10.	221.1069	9237	$\label{eq:hardenergy} \begin{array}{c} H \\ H $	$C_{15}H_{13}N_2$	[+H]+	221.1073	-1.90
11.	207.0918	11651	$\begin{array}{c} \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$C_{14}H_{11}N_2$	[+H]*	207.0917	0.39
12.	167.0723	517	Molecular Formula: C ₁₂ H ₉ N ⁺ Monoisotopic Mass: 167.072951 Da	C₁₂H ₉ N•	+	167.0730	-4.07
13.	128.1069	1310	HO Molecular Formula: C ₇ H ₁₄ NO ⁺ Monoisotopic Mass: 128.10699 Da	C7H14NO	[+H]⁺	128.1070	-0.78

No	Experimental m/z	Intensity	Structure of ion	Molecular Formula	Charge	Predicted m/z	Δ ppm
Precursor Ion	356.1965	_	T2 Da H H H H H H H H	C ₂₀ H ₂₅ N ₃ O ₃	[M+H] ⁺	356.19665	-0.62
1.	338.1854	2865	T2 Da P P P P P P P P P P	C ₂₀ H ₂₄ N ₃ O ₂	[+H]⁺	338.1863	-2.54
2.	313.1546	3062	$\begin{array}{c} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	$C_{18}H_{21}N_2O_3$	+	313.1547	-0.26
3.	295.1458	555	T2 Da $\downarrow \downarrow $	-	_	_	_
4.	265.0964	3912	$\begin{array}{c} O_{+}^{+} & \begin{array}{c} 15 \text{ Da} \\ + & \begin{array}{c} + & \begin{array}{c} + & \end{array} \\ + & \begin{array}{c} + & \begin{array}{c} + & \end{array} \\ + & \begin{array}{c} + & \end{array} \\ OH \\ H \\ $	$C_{16}H_{13}N_2O_2$	+	265.0972	-2.87
5.	255.1125	600	$\begin{array}{c} H \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	$C_{15}H_{15}N_2O_2$	[+H]*	255.1128	-1.37
6.	237.1023	15947	$\begin{array}{c} & \underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$	$C_{15}H_{13}N_2O$	[+H]+	237.1022	0.04
7.	222.0544	5993	$\begin{array}{c} \qquad \qquad$	C14H8NO2	+	222.0550	-2.52

Table S9.15. Fragment ions of 2-oxo-3-OH-LSD

8.	209.1075	3455	$\begin{array}{c} \left(\begin{array}{c} NH_{2}^{+} \\ VH_{2}^{+} \end{array} \right) \\ \\ NH_{2}^{+} \\ NH_{2}^{+$	$C_{14}H_{13}N_2$	[+H]⁺	209.1073	0.62
9.	184.0756	1336	$\label{eq:constraint} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $	$C_{12}H_{10}NO$	[+H]+	184.0757	-0.33
10.	182.0968	1688	Molecular Formula: C ₁₃ H ₁₂ N ⁺ Monoisotopic Mass: 182.096426 Da	$C_{13}H_{12}N$	[+H]+	182.0964	2.03
11.	166.0649	1122	$\label{eq:rescaled} \underbrace{\begin{subarray}{c} \begin{subarray}{c} \b$	C12H8N	+	166.0651	-1.45

S10: Analysis of mass spectra and fragmentation pattern

