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S1. Sample Component Information
The breakdown of components and their concentrations in the samples used in the study
(n = 218) as identified by paper-spray mass spectrometry, benzodiazepine test strips, and
infrared spectroscopy is indicated in Table S1.

S2. Outlier Detection Method
To improve model performance and limit variance in the training data, high variance
samples were removed from the hybrid and high-level spectral training sets. The spectral
data for all samples in the training set (n = 168) were first mean centred and scaled to unit
variance. Principal component analysis (PCA) was then applied reduce the dimensionality
and visualize sample variance in the first 2 principal component space. Outliers were
selected using the minimum covariance determinant (MCD) method, and Mahalanobis
distances were calculated. A threshold based on the χ2 distribution was used to flag
outliers. Figure S1 illustrates the outlier detection process, showing the first two principal
components and robust Mahalanobis distances for SERS, IR, and concatenated SERS–IR
data. This method ensured that the training libraries consisted solely of complex multi-
component samples that clustered within the first two principal components. The outliers
identified by the process were removed, establishing the final training spectral datasets of
SERS (n = 151), IR (n = 153), and concatenated SERS–IR (n = 154) which were used for
hyperparameter optimization and model development.

S3. PCA Feature Extraction
To extract the relevant features for the mid-level data fusion approach, the IR and SERS
datasets (n = 168 for each) were processed into 0th, 1st, and 2nd derivatives, resulting in
three datasets for both IR and SERS. All datasets were standardized using StandardScalar
normalization, and PCA was applied to extract features capturing 95% of the variance. For
the 0th derivative, 46 PCs from SERS and 8 from IR were retained, for the 1st derivative,
50 PCs from SERS and 37 from IR, and for the 2nd derivative, 92 PCs from SERS and 87
from IR. The resulting PC scores from IR were fused to the end of the SERS PC scores
in a single extracted feature matrix using hstack, producing fused SERS–IR PC datasets.
These fused datasets were used to perform hyperparameter tuning for random forest (RF),
support vector machine (SVM), and k-nearest neighbor (KNN) models, with the optimal
model parameters and derivative combination determined based on the F1 score.

The validation datasets for both SERS (n = 50) and IR (n = 50) were preprocessed
with the respective optimal order of derivatives for the given model and were standardized
using the same StandardScaler models that were fitted on the training data. The PCA
transformations were then applied to the standardized test data using the pre-trained PCA
models. The transformed PCA features from both the SERS and IR validation datasets
are then concatenated to form a test feature SERS–IR matrix before assessing model
performance.
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Table S1: Compounds identified by paper-spray mass spectrometry, benzodiazepine
immunoassay test strips, and infrared spectroscopy in all samples (n = 218). Concentration
ranges and median concentrations are listed for all compounds.
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Figure S1: Outlier detection using PCA and robust Mahalanobis distance for (a) SERS,
(b) IR, and (c) concatenated SERS–IR fused spectral data. Each subplot illustrates the
scatter plot of the first two principal components, colour-coded by Mahalanobis distance.
Overlaid contour plots represent the Mahalanobis distances, with identified outliers marked
with x. Gradient colours of the data points range from dark blue (low variance) to red (high
variance).
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S4. Hyperparameter Tuning and Fused Model
Development

S4.1. Hyperparameter Tuning
Binary classification for xylazine prediction in the hybrid, mid-level, and high-level
training sets was performed using random forest (RF), support vector machine (SVM) with
C-support vector classification (SVC), and k-nearest neighbor (KNN) models (scikit-learn).
Default settings from the scikit-learn package were applied to all model parameters not
adjusted during hyperparameter tuning.

All fusion models were optimized using a 5-fold cross-validated grid search to identify
the best combination of parameters and spectral preprocessing techniques. Optimal
values were selected based on the highest F1 score from the grid search. The spectral
preprocessing techniques applied to the training data varied depending on the fusion
method. Hyperparameters were tailored to each classifier and remained consistent across
all fusion approaches. Table S2 summarizes the parameters tested for each classifier type.

S4.2. Hybrid Model Development
The concatenated SERS–IR training set (n = 154) was used to construct the hybrid RF,
SVM, and KNN models. Model parameters were tested in combination with spectral
preprocessing methods for the SERS and IR regions seperately using a pipeline. The
preprocessing pipeline was designed to transform the raw SERS and IR spectral data before
model training. The pipeline first restricted the data to the relevant spectral regions (1601
variables for SERS and 4000 for IR). Next, various preprocessing techniques were applied,
including normalization (SNV, min-max, area, and none) and derivative computation (0,
1, and 2) to enhance spectral features for SERS and IR regions in the same matrix.
These preprocessing steps were systematically optimized using grid search and cross-
validation to identify the best combination of preprocessing methods and classification
model parameters for all hybrid models. Results for the optimized hybrid model parameters
for concatenated SERS–IR spectral data are shown for the RF (Table S3), SVM (Table S4),
and KNN (Table S5) classifiers for the detection of xylazine.

S4.3. Mid-Level Model Development
The SERS–IR PC training sets (n = 168) in the 0th (54 PCs), 1st (87 PCs), and 2nd (179
PCs) derivative were used to construct the mid-level RF, SVM, and KNN models. Model
parameters were tested for all derivative training sets using grid search and cross-validation.
Results for the optimal combination of model parameters and order of derivatives selected
for the SERS–IR PC training set are shown for the RF (Table S6), SVM (Table S7), and
KNN (Table S8) mid-level classifiers for the detection of xylazine.
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Table S2: Investigation of hyperparameters using a 5-fold cross-validation grid search for
development of random forest (RF), support vector machine (SVM), and k-nearest neighbor
(KNN) classification models. Showing hyperparameter descriptions and the parameter
combinations tested for all models.
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Table S3: Investigation of RF hyperparameters and spectral preprocessing techniques using
a 5-fold cross-validation grid search for the detection of xylazine using the hybrid SERS–
IR data fusion method. Showing the combinations tested and the optimal set of parameters
selected based on F1 score.

Table S4: Investigation of SVM hyperparameters and spectral preprocessing techniques
using a 5-fold cross-validation grid search for the detection of xylazine using the hybrid
SERS–IR data fusion method. Showing the combinations tested and the optimal set of
parameters selected based on F1 score.
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Table S5: Investigation of KNN hyperparameters and spectral preprocessing techniques
using a 5-fold cross-validation grid search for the detection of xylazine using the hybrid
SERS–IR data fusion method. Showing the combinations tested and the optimal set of
parameters selected based on F1 score.

Table S6: Investigation of RF hyperparameters using a 5-fold cross-validation grid search
for the detection of xylazine using the mid-level SERS–IR data fusion method. Showing
the combinations tested and the optimal set of parameters selected based on F1 score.
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Table S7: Investigation of SVM hyperparameters using a 5-fold cross-validation grid search
for the detection of xylazine using the mid-level SERS–IR data fusion method. Showing
the combinations tested and the optimal set of parameters selected based on F1 score.

Table S8: Investigation of KNN hyperparameters using a 5-fold cross-validation grid search
for the detection of xylazine using the mid-level SERS–IR data fusion method. Showing
the combinations tested and the optimal set of parameters selected based on F1 score.
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Table S9: Investigation of RF hyperparameters and spectral preprocessing techniques using
a 5-fold cross-validation grid search for the detection of xylazine using SERS and IR data.
Showing the combinations tested and the optimal set of parameters selected based on F1
score.

S4.4. High-Level Model Development
The SERS (n = 151) and IR (n = 153) spectral training sets were each used to construct
their respective RF, SVM, and KNN standalone models. Classifier-specific hyperparamters
were tested in combination with various spectral preprocessing methods (normalization
and derivatives) to optimize the parameters for the standalone SERS and IR models.
The optimized parameters for detecting xylazine were identified for RF (Table S9), SVM
(Table S10), and KNN (Table S5) models across both spectroscopic platforms.

S5. Voting Classifier (Weighted)
A weighted voting classifier (sklearn.ensemble) was constructed to combine the predictions
from both SERS and IR models in the high-level data fusion approach. The high variance
samples identified for both standalone SERS (n = 17) and IR (n = 15) training data
were removed to establish the high-level training library (n = 141) for assessing weight
combinations. All combinations of weights for the SERS and IR standalone models,
summing to 1, were evaluated using a 5-fold cross-validation grid search on the training
data. The voting classifier was initialized in ’soft’ voting mode, enabling probability-based
weighting. The optimal weight combination for the SERS and IR models was selected
based on the highest F1 score. The tested weight combinations and their respective results
are shown for the high-level RF (Table S12), SVM (Table S13), and KNN (Table S14) fused
models. The best performing weights were applied to the predicted probability scores of
the standalone models on the test set and added together for all the high-level fused model
predictions.

S6. Analysis of SERS and IR Standalone Models
All SERS and IR standalone models developed for the high-level data fusion method were
evaluated independently on the validation set (n = 50) to assess xylazine prediction results
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Table S10: Investigation of SVM hyperparameters and spectral preprocessing techniques
using a 5-fold cross-validation grid search for the detection of xylazine using SERS and IR
data. Showing the combinations tested and the optimal set of parameters selected based on
F1 score.

Table S11: Investigation of KNN hyperparameters and spectral preprocessing techniques
using a 5-fold cross-validation grid search for the detection of xylazine using SERS and IR
data. Showing the combinations tested and the optimal set of parameters selected based on
F1 score.

– S11 –



Table S12: Investigation of weights tested for standalone SERS and IR RF model
predictions using a 5-fold cross-validation grid search on the high-level training set (n =
141) for the classification of xylazine. The table shows the weight combinations tested
and their corresponding F1 scores. The highlighted row indicates the optimal weight
combination selected for the high-level RF model.
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Table S13: Investigation of weights tested for standalone SERS and IR SVM model
predictions using a 5-fold cross-validation grid search on the high-level training set (n =
141) for the classification of xylazine. The table shows the weight combinations tested
and their corresponding F1 scores. The highlighted row indicates the optimal weight
combination selected for the high-level SVM model.
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Table S14: Investigation of weights tested for standalone SERS and IR KNN model
predictions using a 5-fold cross-validation grid search on the high-level training set (n =
141) for the classification of xylazine. The table shows the weight combinations tested
and their corresponding F1 scores. The highlighted row indicates the optimal weight
combination selected for the high-level KNN model.
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of the spectroscopic platforms. ROC analysis was performed on all SERS and IR models
across the range of predicted probabilities to determine the AUC and the cut-off threshold.
Optimal thresholds were calculated using Youden’s J statistic and applied to the test set to
evaluate the xylazine prediction results of all individual models. The summary of AUC,
optimal threshold, and all performance metrics for SERS and IR standalone models using
RF, SVM, and KNN classifiers is illustrated in Table S15. A detailed breakdown of sample
composition and xylazine prediction results of the RF, SVM, and KNN classifiers using
SERS, IR, and high-level SERS–IR data on the validation set (n = 50) is presented in
Table S16.

Table S15: Performance metrics summary for RF, SVM, and KNN models using SERS
and IR spectral data for xylazine detection. Summary of the Area Under the Curve (AUC),
optimal threshold, accuracy, precision, sensitivity, specificity, and F1 score for opioid
samples (n = 50) tested with RF, SVM, and KNN models.

S7. Validation Makeup
The complete breakdown of sample composition and the xylazine prediction results of all
fused models on the validation set (n = 50) is illustrated in Table S17.
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