A new strategy for RRS determination of phosphate with bifunctional Fe₃O₄ magnetic nanoparticle surface molecularly imprinted polydopamine probe

Wenxin Wan ^{a,b,c}, Jie Yang^{a,b,c}, Guiqing Wen ^{a,b,c*}, Aihui Liang ^{a,b,c}, Zhiliang Jiang ^{a,b,c*}

^a Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection

(Guangxi Normal University), Ministry of Education, Guilin 541004, China;^b Guangxi Key

Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China;

^cGuangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile

Regions.

Fig.S1. Fe₃O₄,Fe₃O₄@MIP potential diagram and particle size diagram

Fig.S2. Fe₃O₄@MIP UV spectrum of the elution templatea: First elution template; b: Second elution template; c: third elution template; d: fourth elution template3.3 RRS and Abs spectra of the Fe₃O₄@MIP- PO₄^{3—}MAS analysis system

Fig.s3. The stability of Fe3O4@MIP

Fig.S4. Abs spectrum of Fe₃O₄@MIP- PO₄³⁻-MSA (n=3) 0.0125g/L Fe₃O₄@MIP+ 3.5 mmol/L H₂SO₄ + 0.1 μmol/L MSA + 0.055 μmol/L Aa + (0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5) μmol/L PO₄³⁻-25[°]C-10min.

Fig.S5. Optimization of material preparation conditions(n=3) A: Effect of functional monomer dosage: 0.5mmolPMo- (0.25, 0.6, 1, 2, 3mmol) PD-70m gFe₃O₄NP-25°C-4h; B: Effect of preparation time: 0.5mmol PMo-0.6mmol PD-70mg Fe₃O $_4$ NP-25°C- (2, 3, 4, 7, 9) h; C: Effect of preparation temperature: 0.5mmolPMo- (0.25, 0.6, 1, 2, 3) mmol PD-70mg Fe₃O₄NP- (25, 35, 45, 55, 65 °C-4 h.

Fig.S6. Analysis condition optimization(n=3)

A: Effect of H_2SO_4 concentration : 0.0125 g/L Fe₃O₄@MIP + (0.5, 1.5, 2.5, 3.5,4.5) mm ol/L H_2SO_4 + 50 µmol/L MSA + 0.055 µmol/L ascorbic acid + 10µmol/L PO4³-25°C-10 min B: Effect of Aa concentration: 0.0125 g/L Fe₃O₄@MIP+ 3.5 mmol/L H_2SO_4 + 50 µ mol/L MSA + (0.005,0.015,0.025,0.035,0.045,0.055,0.065) µmol/L Aa+ 10 µmol/L PO4³⁻25°C -10 min; C: Effect of Fe₃O₄@MIP concentration: (0.006, 0.0075, 0.009, 0.01, 0. 12, 0.125, 0.135) g/L Fe₃O₄@MIP + 3.5mmol/L H_2SO_4 + 50 µmol/L MSA + 0.055 µmol/L Aa+ 10µmol/L PO4³⁻25 °C-10min; D: Effect of resting temperature: 0.0125 g/L Fe₃O₄@MIP + 3.5mmol/L H₂SO₄ + 50 µmol/L MSA + 0.055 µmol/L Aa+ 10µmol/L PO4³⁻25 °C-10min; D: Effect of resting temperature: 0.0125 g/L Fe₃O₄@MIP+ 3.5mmol/L H₂SO₄ + 50 µmol/L MSA + 0.055 µmol/L Aa + 10 µmol/L PO4³⁻(5, 15, 25, 35, 45, 55, 65)°C-10min; E: Effect of standing time: 0.0125 g/L Fe₃O₄@MIP+ 3.5mmol/L H₂SO₄ + 50 µmol/L MSA + 0.055 µmol/L Aa + 10µmol/L PO4³⁻(5, 15, 20, 25, 30) min_° F: Effect of MSA concentration: 0.0125 g/L Fe₃O₄@MIP + 3.5mmol/L H₂SO₄ + (30,50,100,150,200,250)µmol/L MSA + 0.055µmol/L ascorbic acid + 10µmol/L PO4³⁻25 °C-10min

0;[Re26](0)

Fig.S7. Fe₃O₄@MIP magnetic separation enrichment δ I-dilution ratio (n) diagram (A); Fe₃O₄@MIP magnetic separation and enrichment recovery-dilution ratio (n) diagram (B); RRS spectra with enrichment recoveries of 95.69%-116.90% (n=1,10,50,100,150) (C)

Fig.S8. Comparison between enriched experimental phosphate solution group and blank group

Probe	method	Regression equation	Linear range (µm ol/L)	Regression equation	Limit of detection (µmol/L)
<u>Fe₃O₄@MIP</u>	RRS	$\Delta I = 35.2C + 2.6$	1-22.5	0.98	0.49
	Abs	ΔA=0.0171C+0.015	2.5-22.5	0.98	1.06
MIP	RRS	$\Delta I = 17.5 x + 4.6$	2.5-20	0.99	0.99
Fe3O4@MIPm	RRS	Δ I=17.24x - 2.36	2.5-17.5	0.99	1.00
Fe3O4@NIP	RRS	Δ I=25.69x + 52.96	2.5-17.5	0.95	0.67

Table S1	Working	curves
----------	---------	--------

Table S2 Interference	assays
-----------------------	--------

Interfering ion	Relative multiple	Relative error (%)	Interfering ion	Relative multiple	Relative error (%)
Ni ²⁺	500	-3.5	SO4 ²⁻	100	-0.4
Mn^{2+}	500	2.9	\mathbf{K}^+	100	1.6
SiO ₃ ²⁻	500	4.7	Al^{3+}	100	3.2
NO ₃ ³⁻	300	-5.0	Ca ²⁺	100	-5.1
Zn^{2+}	300	-8.7	Co ²⁺	100	3.9
Mg^{2+}	300	-5.7	NO2-	50	6.8
Fe ²⁺	100	2.0	NH4 ⁺	50	5.0

Table S3 Determination results of PO_4^{3-} in water samples(n=5)

Sample	Mean value	Added	Measured	Recove	RSD	Dilution	Content (Photome
	(um	(μ.))		Tutto	µmon L /	(umol/L)
	ol/L			/				(µmoi/L)
)							
Lake1	10.44	5	15.00	91.29	1.85	10	104.38	104.21
Lake2	6.78	5	12.01	104.62	8.90	10	67.82	70.18
Lake3	10.38	5	15.33	98.99	1.57	25	259.5	274.75
Lake4	11.41	5	16.66	104.95	0.74	25	285.25	289.25
Lake5	10.61	5	15.33	94.17	2.67	25	265.25	274.75
Lake6	7.31	5	12.09	95.59	3.30	20	146.2	142.6
River1	7.24	5	11.78	90.95	9.22	10	72.36	75.26
River2	15.13	5	19.64	90.20	10.34	20	302.6	298.2
River3	15.94	5	21.02	101.83	0.62	20	318	288.8
River4	3.68	5	8.66	99.56	9.62	10	36.8	31.5
River5	11.54	5	16.78	104.98	1.09	20	230.8	214
River6	7.12	5	12.19	101.20	5.57	20	142.4	152
Tap water1	13.73	5	18.37	92.67	2.90	10	137.32	130.87
Tap water2	1.63	5	6.98	107.22	8.54	10	16.3	18.4
Tap water3	1.77	5	7.16	107.79	9.62	10	17.7	19
Tap water4	6.03	5	11.54	110.19	7.24	20	120.6	131
Tap water5	6.21	5	11.55	106.25	0.91	20	124.2	123.6
Tap water6	2.05	5	7.39	106.77	8.6	20	41	47.6

Note: Mean value refers to the average value of 5 measurements before adding standard to the water sample. Measured value refers to the measured value of the

sample after spiking. Recovery=100×(Measured value-Mean value)/Added concentration.