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1. Dummy Raman generator
To evaluate the efficiency of the analytical method, we created a dummy Raman 
generator capable of producing rectangular Raman arrays containing 400 x 200 spectra, 
with each spectra going from 400 to 4000 cm-1. This was done in order to replicate the 
possible input of the analytical software, while being able to control key factors such as 
noise and background intensity. The dummy generator is able to replicate cosmic rays, 
background (parabolic or linear), noise, as well as 4 independent Raman signals with 
different distributions. For each component, the Raman spectrum and the distribution is 
presented in Figures S1 and S2. In brief:
- Signal 1(Fig. S1b and S2b) contains one sharp band at 500 cm-1 and a broad weak band 

at 1500 cm-1, localized in vertical stripes;
- Signal 2 (Fig. S1c and S2c) contains three sharp bands, at 510 cm-1, 1200 cm-1 and 

2900 cm-1, with different relative intensities and FWHM, and their absolute intensity 
is a gradient from the left to the right of the map;

- Signal 3(Fig. S1d and S2d) contains a sharp band located at 1750 cm-1, and is 
distributed inside three circles of different diameter;

- Signal 4(Fig. S1e and S2e) is located inside four circles of different diameter, that 
partially overlap with both Signal 1 and Signal 3 distributions.

Figure S1: dummy Raman signals used by the software to produce simulated Raman datasets: a) a 

linear background (example), b) Signal 1, c) Signal 2, d) Signal 3 and e) Signal 4



Figure S2: distribution of the different Raman signals on the simulated Raman datasets

2. Benchmarks
The analytical method analyzes Raman maps and performs Principal Component 
Analysis (PCA) to identify the presence of different chemical components within a 
sample. Here's how we define success based on the number of distinct signals visualized 
in the PCA analysis, using 3 PC:
- Complete Success (4 Signals): All four expected chemical components are clearly 

distinguishable and represented by separate signals in the PCA image. This indicates 
the software accurately identified and differentiated all components within the 
sample;

- Partial Success (3 Signals): Three out of the four expected chemical components are 
clearly visible in the PCA image. This suggests the software performed well in 
identifying most components, but one may be obscured by noise or by the other 
signals;

- Failure (2 or Less Signals): Two or fewer distinct signals are present in the PCA image. 
This indicates the software may not be effectively differentiating the different 
chemical components within the sample, at these simulating conditions.

3. Effect of cosmic rays
The effect of cosmic rays on the PCA analysis (for an otherwise empty Raman dataset) is 
summarized in Figure S3 and S4, as a function of increased probability, as summarized 
in Table S1:



Table 1: probability of having a cosmic ray for each data point and for each spectra
Image Probability (for a 

single data point)
Probability (for a 

spectra)
S3a 0 0
S3b 10-5 4 x 10-3

S3c 10-4 4 x 10-2

S3d 5 x 10-4 0.2
S3e 2.5 x 10-3 1
S3f 1.25 x 10-2 5

Figure S3: intensity maps as a function of the probability for a data point to be a cosmic ray: a) 0 b) 

10-5 c) 10-4 d) 5 x 10-4 e) 2.5 x 10-3 f) 1.25 x 10-2



Figure S4: PC1 vs PC2 as a function of the probability for a data point to be a cosmic ray: a) 0 b) 10-5 

c) 10-4 d) 5 x 10-4 e) 2.5 x 10-3 f) 1.25 x 10-2

In Figure S4, some clustering can be observed already at cosmic ray probability 0.0005, 
but the PC1 and PC2 scores of these clusters appear to be very low, meaning that in 
presence of any other Raman signal distributions, these clusters are unlikely to be visible 
after a PC analysis.

4. Effects of noise
The effect of noise has been taken into account by adding a randomized signal 
proportional to the maximum intensity of the Raman signals. Examples with relative 
intensity between 0.1 and 10 are presented in Figure S5, S6, S7, S8 and S9, where, for 
simplicity, all four Raman signals were set at the same maximum intensity. The subfigure 
a) represent the intensity map (as described in the main manuscript), the subfigure b) the 
result of the clustering process (as described in the main manuscript), the subfigure c) the 
signal over noise ratio (as described in the main manuscript), the subfigures d) e) and f) 
the scores of the PC1, PC2 and PC3 respectively.

Figure S5: analysis performed in absence of noise



Figure S6: analysis performed with noise up to 1/10 of the maximum signal

Figure S7: analysis performed with noise up to the maximum signal



Figure S8: analysis performed with noise up to 5 times the maximum signal

Figure S9: analysis performed with noise up to 10 times the maximum signal

The analytical software is able to identify the four Raman signals up to a maximum noise 
level equal to the maximum signal, while only one of the signals (Signal 4) is lost when 
the maximum noise intensity is increased to 5 times the maximum intensity of the Raman 
signal, and no signal is visible for maximum noise intensities 10 times the maximum 
Raman signal.

Considering that, in Raman imaging, the spectral quality is usually relatively low due to 
the necessity to acquire large amounts of data, the noise limit plays a crucial role.



5. Detection limit
To estimate the minimum detection limit in absence of noise, the intensity of Signal 1, 
Signal 2 and Signal 3 were set to 1, 0 and 1 respectively, while the intensity of Signal 4 
was progressively reduced from 1 to 0.01. The results in terms of a) signal intensity b) 
clustering c) signal over noise ratio, d) PC1 scores e) PC2 scores and f) PC3 scores are 
presented in Figures S10, S11, S12, S13 and S14.

Figure S10: Results for a relative intensity of Signal 4 of 1

Figure S11: Results for a relative intensity of Signal 4 of 0.5



Figure S12: Results for a relative intensity of Signal 4 of 0.25

Figure S13: Results for a relative intensity of Signal 4 of 0.1



Figure S14: Results for a relative intensity of Signal 4 of 0.01

At a relative intensity of 0.01, the method is unable to correctly discriminate the areas 
where the Signal 4 is located. It should be noted that the clustering method (subfigures 
b)) already fails at 0.25.

The presence of noise has also an effect on the detection limit. The limit is unchanged for 
a noise intensity 0.1 (Fig. S15), but it decreases to 0.25 when the max noise is equal to 
the max signal (Fig. S16).

Figure S15: effect of noise on the detection limit, for Signal 4 intensity of 0.1 and noise 0.1



Figure S16: effect of noise on the detection limit, for Signal 4 intensity of 0.25 and noise 1

6. Effect of background
The effect of the background has been evaluated using linear or parabolic curves added 
to the signals. When the same background is added to all spectra, its effects are negligible 
as even for background intensities 1,000 times stronger than the Raman signals, the PC 
maps are not unaffected.

In Raman spectroscopy, the intensity of the background signal varies from point to point. 
To render this variability in the dummy Raman dataset, we add a random multiplier from 
0 to 1 to each background curve before adding it to the signals. Even in absence of noise, 
the variability of the background intensity is enough to reduce the efficiency of the 
analysis, and for maximum background intensities 20 times more intense than the weakest 
signal (Figure S17), it becomes impossible to detect Signal 4.



Figure S17: results of the analysis for a background signal 20 times stronger than the Raman signals

This value is further reduced when noise is added to the equations. For a noise value of 
0.01 times the signal intensity, the maximum acceptable background intensity multiplier 
goes from 20 to 10 (Figure S18). For a noise value of 0.1, it further reduces to 6 (Figure 
S19). For a noise value of 1, it reaches 1.5 (Figure S20).

Figure S18: results of the analysis for a background signal 10 times stronger than the Raman signals 

with a noise relative intensity of 0.01



Figure S19: results of the analysis for a background signal 6 times stronger than the Raman signals 

with a noise relative intensity of 0.1

Figure S20: results of the analysis for a background signal 1.5 times stronger than the Raman signals 

with a noise relative intensity of 1

In real applications, the shape of the background can change along with its relative 
intensity. This is true in particular for biological samples, so it will be discussed in detail 
in a follow-up paper focused on Raman spectroscopy for biology.



7. Raw average spectra

Figure S21: raw average spectra for the six specimen analyzed in the main manuscript

Figure S21 shows the 6 raw average spectra that were utilized during the analytical 
processes, without any additional pre-treatment such as baseline removal or smoothing.



8. Optimizing the number of clusters

Figure 7 shows a comparison between the AlN/PMMA sample and the ZrO2/PE sample for a number 

of clusters between 1 and 6.

Figure S22: Raman imaging cluster maps for the sample AlN/PMMA (left) and ZrO2/PE (right) as a function of number 

of clusters, between 1 and 6.

For samples that possess a homogeneous composition, like the two sides of the ZrO2/PE interface in 

Figure S22, increasing the number of clusters gives topographical information comparable to contour 

lines in geographical maps. For samples that also have chemical differences, such as for example 

because of the presence of secondary phases, the topographical information is still present, but mixed 

with the chemical mapping to the point that it can be difficult to distinguish between the two. This 

concept is probably better shown in the AlN/PMMA map with c=6. While increasing the number of 

clusters on the AlN/PMMA sample gives better insights about the structure of the sample, to the point 

that the  map is very similar to the microscope image of Figure 2(e), adding more than 2 clusters 𝑐= 6



in the ZrO2/PE maps creates sub-regions that only differ because of the alignment of the surfaces, 

giving no real spectroscopic clue for further analysis.

9. PC2 vs PC3 and PC1 vs PC3 scores

Figure S23: PC2 and PC3 scores for the six different samples: (a) blank, (b), Si reference, (c) ginkgo, (d) ZrO2/PE, (e) 

AlN/PMMA, (f) Si3N4



Figure S24: PC1 and PC3 scores for the six different samples: (a) blank, (b), Si reference, (c) ginkgo, (d) ZrO2/PE, (e) 

AlN/PMMA, (f) Si3N4

Figure S23 and Figure S24 show the scatter plots related to the scores of PC2 vs PC3 and PC1 vs PC3. 

In four cases, the Blank sample, the Si reference, the ZrO2/PE interface and the AlN/PMMA 

composite, the scores of PC3 resulted to be lower than 2%, making the contribution of the third 

principal component virtually irrelevant. This is further confirmed by the strong overlapping between 

different clusters in the relative scatter plots. Both the Ginkgo leaf and the Si3N4 block see a substantial 

contribution of the third principal component, and the reason behind this will be further discussed in 

the main manuscript.


