Electronic Supplementary Material (ESI) for Analytical Methods This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Information

A novel ratiometric sensor for fluormetric and visual dualmode detection of Al³⁺ in environmental water based on target-regulated the synthesis of Eu MOFs

Tao-Li Chen, Xiang-Juan Kong*, Xin-Xin Dong, Zhi-Jie Mao, Fang-Fang Kong, Qiang Xiao*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China

* Corresponding authors

E-mail:xiangjuankong@163.com; xiaoqiang@tsinghua.org.cn

Fig. S1 Optimization of the Eu MOFs preparation. The effect of the Hepes concentration(A), Eu^{3+} concentration (B), the solution pH (C) and reaction time (D) on the emission intensity of Eu MOFs. Error bars represent the standard deviation of three experiments. The conditions of 25 mM Hepes, 50 μ M Eu³⁺ concentration, the pH of the solution 7.0 and the reaction time of 2 min were selected.

Fig. S2 Energy dispersive X-ray spectroscope (EDS) spectra of Eu MOFs.

Fig. S3 Fluorescence emission spectra of Eu MOFs at different excitation wavelength.

Fig. S4 Fluorescence lifetime of Eu MOFs.

Fig. S5 Chemical structure of TC.

Fig. S6 The energy transfer mechanism diagram of TC to Eu³⁺.

Fig. S7 UV-vis absorbance spectra of the samples under various conditions.

Fig. S8 TEM images of (A)Hepes+Eu³⁺ and (B) TC+Eu³⁺. The sample of TC+Eu³⁺ were prepared in sterilized water with pH 7.0, which was the same as the pH of Hepes buffer.

Fig S9. Fluorescence lifetime of Eu MOFs (A) and Al³⁺-TC complex (B) in the mixture of Al³⁺, Hepes, TC and Eu³⁺.

Fig S10. Optimization of the ratiometric sensor for Al^{3+} detection. The effect of the solution pH (A) and the incubation time of TC with Al^{3+} (B) on the emission ratio of I_{530}/I_{615} . Error bars represent the standard deviation of three experiments. The pH of the solution 6.0 and reaction time of 10 min were selected for the coordination of TC with Al^{3+} .

Method/Material	Signal	Detection range	Limit of detection	Reference	
Fluorometric and visual methods/	Fluorescence	0–50 µM	28.6 nM	C 1	
Europium doped carbon dots	Colorimetry	0–80 µM	160 nM	51	
Fluorometric analysis/					
Multiresponsive tetrarylethylene-based	Fluorescence	0–180 µM	130 nM	S2	
fluorescent dye					
Fluorescence analysis/Quantum dots	Fluorescence	0–0.5 mM	0.56 μΜ	S3	
Fluorescence analysis/ Dual-					
Functionalized Red-Emitting Copper	Fluorescence	0–2.4 µM	187 nM	S4	
Nanoclusters					
Fluorescence analysis/Ce–N–C	Electron	0.27.5	22.98 ng·mL ⁻¹	S5	
nanozyme	Fluorescence	0–27.5 μg·mL ¹	(0.85 µM)		
Fluorescence analysis/ Chalcone	Electron	0.45M		0(
derivative grafted ethylcellulose	Fluorescence	0-45 μΜ	0.23 μΜ	50	
Ratiometric fluorescence and	Fluorescence	0–400 µM	0.14 μM	Th:1	
colorimetric sensor	Colorimetry	0–400 µM	1.21 μM	I his work	

 Table S1. Comparison of various reported methods for Al³⁺ detection.

Sample	Added (µM)	Found (μM)	Recovery	RSD (n=3)
1	50.0	48.67	97.34%	2.40%
2	100.0	98.54	98.54%	1.94%
3	200.0	181.96	90.98%	2.29%
4	300.0	295.17	98.39%	3.45%

Table S2. Analytical results of Al^{3+} in lake water samples using the ratiometric dualmode sensor.

Sample	Added (µM)	Found (μM)	Recovery	RSD (n=3)
1	50.0	54.73	109.46%	3.47%
2	100.0	96.30	96.30%	2.19%
3	200.0	204.98	102.49%	1.82%
4	300.0	277.41	92.47%	4.82%

Table S3. Analytical results of Al^{3+} in tap water samples using fluorescence spectrophotometer with the ratiometric dual-mode sensor.

Sample	Added (µM)	Imaging	Measured by G/R (μM)	Recovery	RSD(n=3)
1	50.0		48.69	97.38%	2.34%
2	100.0		99.96	99.96%	1.21%
3	200.0		207.08	103.54%	1.43%
4	300.0		311.91	103.97%	1.07%

Table S4. Analytical results of Al^{3+} in lake water samples using smartphone with the ratiometric dual-mode sensor.

Sample	Added (µM)	Imaging	Measured by G/R (μ M)	Recovery	RSD(n=3)
1	50.0		48.62	97.24%	1.31%
2	100.0		97.94	97.94%	1.53%
3	200.0		218.78	109.39%	2.29%
4	300.0		304.80	101.60%	1.41%

Table S5. Analytical results of Al^{3+} in tap water samples with smartphone using the ratiometric dual-mode sensor.

References

- S1. Y. Sang, K. Wang, X. Kong, F. Cheng, C. Zhou, W. Li, Sens. Actuators B Chem., 2022, 362, 131780.
- S2. Y. Mu, H. Fan, M. Li, R. Wang, Z. Chen, C. Fan, G. Liu, S. Pu, J. Mater. Chem. B, 2022, 10, 9235–9248.
- S3. J. A. O. Granados, P. Thangarasu, N. Singh, J. M. Vázquez-Ramos, *Food Chem.*, 2019, 278, 523–532.
- S4. V. Bhardwaj, S. Bothra, Y. Upadhyay, S. K. Sahoo, *ACS Appl. Nano Mater.*, 2021, 4, 6231–6238.
- S5. G. Song, J. C. Li, Z. Majid, W. Xu, X. He, Z. Yao, Y. Luo, K. Huang, N. Cheng, Food. Chem., 2022, 390, 18205–133127.
- S6. G. Zhou, Z. Zhang, Z. Meng, C. Qian, M. Li, Z. Wang, Y. Yang, Int. J. Biol. Macromol., 2023, 252, 126475.