
Electronic Supplementary Information

A Thiol-Anchored Solvatochromic and Fluorogenic Molecular Rotor for Covalent Protein Labeling in SDS-PAGE and Mitochondria Specific Fluorescence Imaging

Chao Wang*, Yujie Wang, Mengxiang Feng, Rongrong Yuan, Guang Chen*

College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. E-mail: wangchao@sust.edu.cn, chenandguang@163.com

Scheme S1. Synthetic of the probes DASPBCI and DASPB.

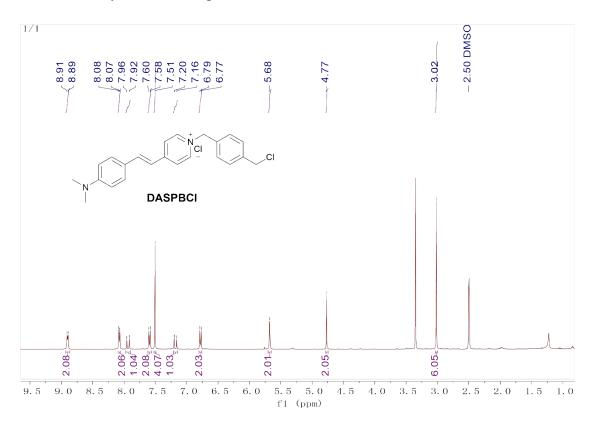


Fig S1. ¹H NMR spectrum of DASPBCI.

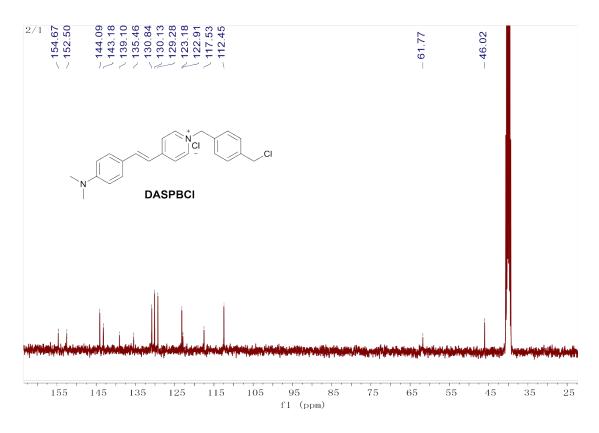


Fig S2. ¹³C NMR spectrum of DASPBCI.

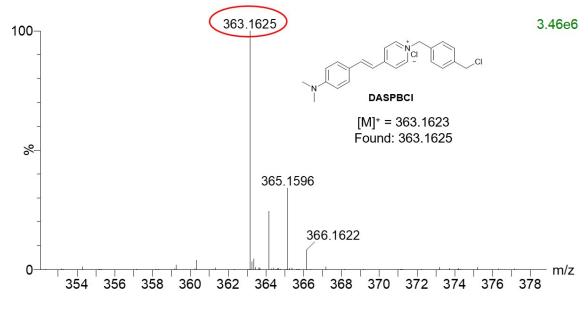


Fig S3. HRMS of DASPBCI.

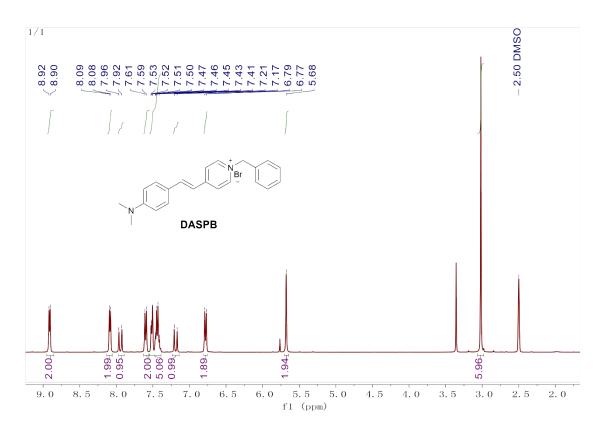


Fig S4. ¹H NMR spectrum of DASPB.

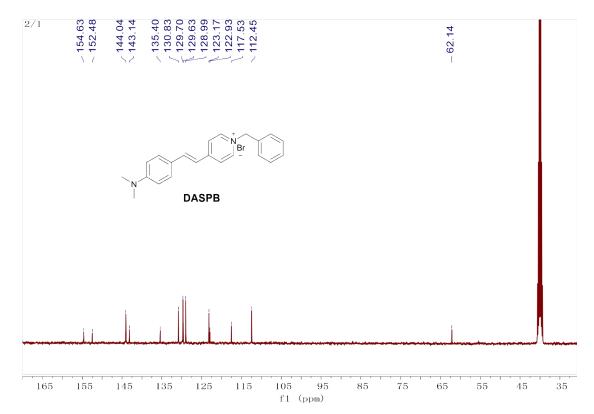


Fig S5. ¹³C NMR spectrum of DASPB.

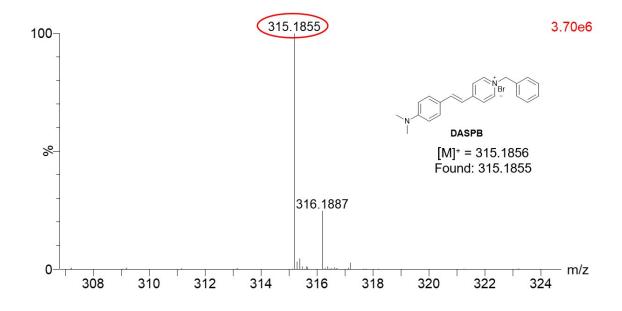


Fig S6. HRMS of DASPB.

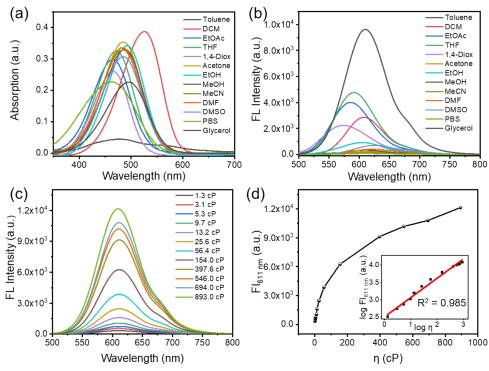


Fig S7. (a) Absorption spectra of **DASPB** (10 μ M) in different solvents. (b) Fluorescence spectra of **DASPB** (10 μ M) in different solvents. (c) Fluorescence spectra of **DASPB** (10 μ M) with the variation of solution viscosity (methanol-glycerol system), $\lambda ex = 480$ nm. (d) The relationship between fluorescence intensity (FI) at 611 nm and viscosity (η) of methanol-glycerol solution. Inset: The linear relationship between log FI _{611 nm} and log η . (log FI = 0.557log η + 2.509, R² = 0.985).

Solvent	λ_{abs}/nm	λ_{em}/nm	Stokes shift/nm	$\epsilon/\!\times 10^4~M^{\text{-1}}\text{cm}^{\text{-1}}$	Φ/%
Toluene	480	570	90	0.54	5.6
1,4-Diox	467	579	112	1.73	9.8
DCM	522	606	84	2.91	2.4
EtOAc	465	585	120	2.06	7.3
THF	472	590	118	2.31	10.2
Acetone	486	618	132	2.76	0.7
EtOH	494	604	110	2.82	2.4
MeOH	490	611	121	2.75	0.9
MeCN	485	620	135	2.66	0.4
DMF	484	624	140	2.54	5.5
DMSO	486	626	140	2.29	3.0
PBS	465	612	147	1.49	1.0
Gycerol	497	611	114	1.86	33.4

Table S1 The spectral properties of probe DASPBCl in different solvents

Table S2 The spectral properties of probe DASPB in different solvents

Solvent	$\lambda_{abs}\!/nm$	λ_{em}/nm	Stokes shift /nm	$\epsilon/\times 10^4 M^{\text{-1}} \text{cm}^{\text{-1}}$	Ф/%
Toluene	480	572	92	0.45	4.3
1,4-Diox	465	574	109	2.60	13.5
DCM	526	608	82	3.87	3.0
EtOAc	465	586	121	2.98	11.8
THF	471	591	120	3.26	18.9
Acetone	485	618	133	3.54	0.9
EtOH	492	605	113	3.42	2.3
MeOH	488	611	123	3.31	1.0
MeCN	483	620	137	3.36	0.5
DMF	484	623	139	3.29	2.6
DMSO	485	625	140	3.08	2.7
PBS	462	615	153	2.27	0.6
Gycerol	496	611	115	2.26	35.4

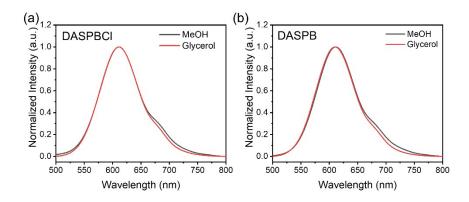


Fig. S8. The normalized fluorescence spectra of probe DASPBCI (a) and DASPB (b) in methanol and glycerol.

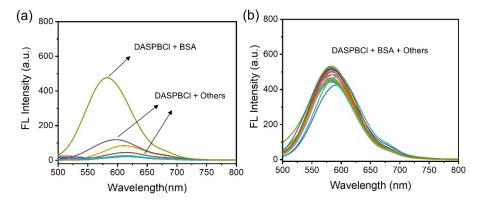


Fig S9. The selective test and the anti-interference detection of **DASPBCI** with BSA. (a) The selective test of **DASPBCI** probe to inorganic ions, amino acids and proteins for BSA. (b) The anti-interference detection of BSA by **DASPBCI** probe in the presence of various active substances. The concentration of all additives was 100 μ M, except BSA (10 μ M, 0.66 mg/mL) and myoglobin (44 μ M, 0.66 mg/mL). λ ex = 480 nm.

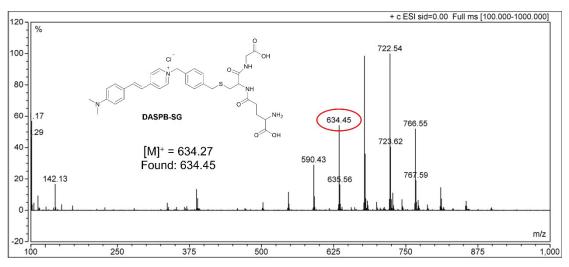


Fig S10. ESI-MS of the reaction solution of DASPBCI and GSH.

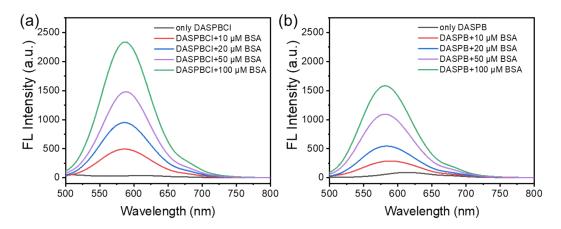


Fig. S11. The fluorescence spectra of (a) DASPBCl (10 μ M) and (b) DASPB (10 μ M) upon the addition of different concentrations of BSA.

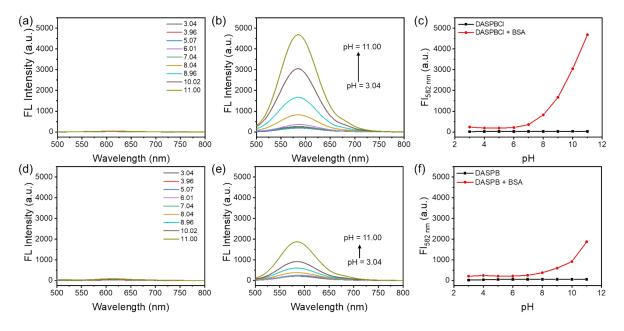


Fig S12. (a) The fluorescence intensity of **DASPBCI** in PBS buffer in different pH from 3 to 11. (b) The fluorescence intensity of **DASPBCI** with BSA in PBS buffer with different pH. (c) The fluorescence intensity of **DASPBCI** at 582 nm. (d) The fluorescence intensity of **DASPB** in PBS buffer in different pH from 3 to 11. (e) The fluorescence intensity of **DASPB** with BSA in PBS buffer with different pH. (f) The fluorescence intensity of **DASPB** at 582 nm. The probe concentration is 10 μ M, and the BSA concentration is 10 μ M. $\lambda ex = 480$ nm.

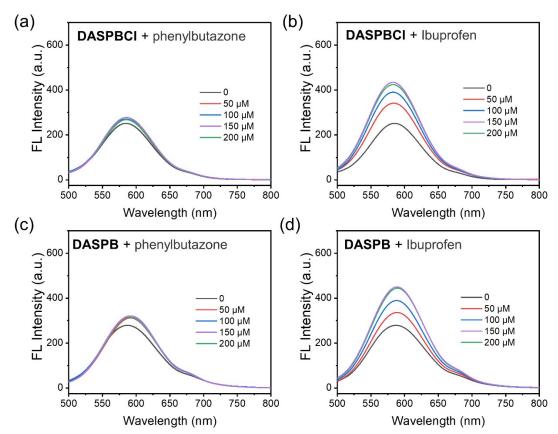


Fig. S13. The fluorescence spectra of DASPBCI-BSA (10 μ M) complex with the addition of 0-200 μ M phenylbutazone (a) and ibuprofen (b); The fluorescence spectra of DASPB-BSA (10 μ M) complex with the addition of 0-200 μ M phenylbutazone (c) and ibuprofen (d), respectively.

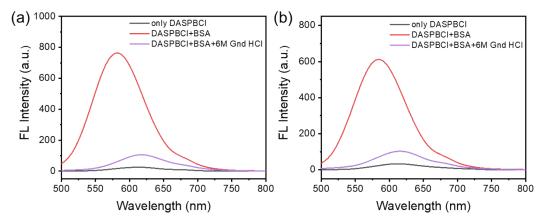
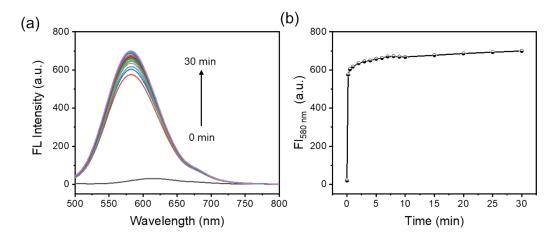
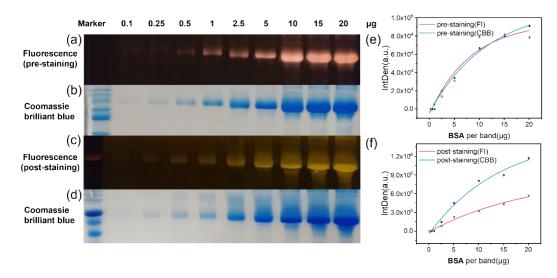




Fig S14. (a) Fluorescence spectra of **DASPBC1** with BSA (10 μ M) and BSA pretreated with 6 M GndHC1 in PBS for 30 min. (b) Fluorescence spectra of **DASPBC1** with BSA (10 μ M) and followed by the addition of 6 M GndHC1 for 30 min. $\lambda ex = 480$ nm.

Fig S15. (a) Time-dependent fluorescence spectra of **DASPBCI** (10 μ M) in PBS with BSA (10 μ M). λ ex = 480 nm. (b) The fluorescence intensity (580 nm) of **DASPBCI** (10 μ M) at different time.

Fig S16. (a) SDS-PAGE fluorescence image of **DASPBC1** pre-stained BSA with various loaded amounts (0-20 μ g) of protein and (b) image of the same gel stained with CBB. (c) Plots of fluorescence and CBB versus amount of BSA in the SDS-PAGE assay. (d) SDS-PAGE fluorescence image of **DASPBC1** poststained BSA with various loaded amounts and (e) image of the same gel stained with CBB. (f) Plots of fluorescence and CBB versus amount of BSA in the SDS-PAGE assay.

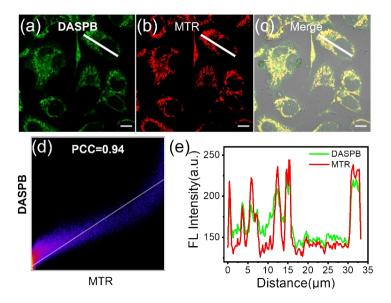


Fig S17. Fluorescence images of HeLa cells co-incubated with (a) **DASPB** (10 μ M, 1 h) and (b) MTR (0.2 μ M, 1 h). (c) Merged images. (d) Pearson's colocalization coefficient of **DASPB** with MTR (PCC =0.94). (e) Fluorescence intensity distribution of a linear ROI across the cells. **DASPB**: $\lambda ex = 488$ nm, $\lambda em = 500-590$ nm; MTR: $\lambda ex = 561$ nm, $\lambda em = 591-700$ nm. Scale bar: 10 μ m.

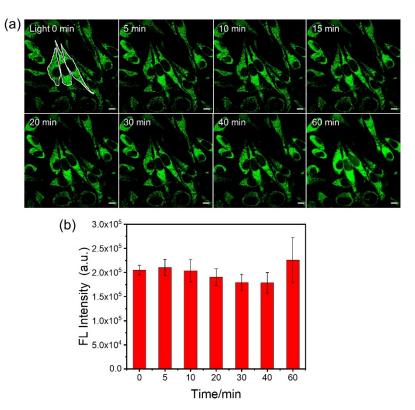


Fig. S18. (a) Fluorescence image of HeLa cells incubated with DASPBCI for 30 min under 488 laser irradiations for 60 min. (b) The calculated fluorescence intensity in (a). $\lambda ex = 488$ nm, $\lambda em = 500-700$ nm. Scale bar: 10 µm.

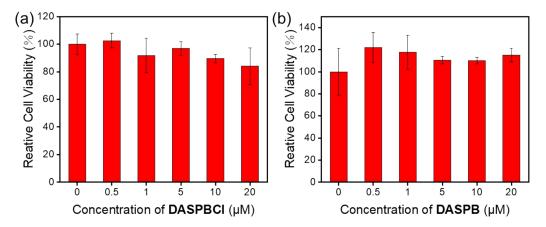


Fig S19. General cytotoxicity of probe DASPBCl (a) and DASPB (b) in living HeLa cells calculated by MTT assay. HeLa cells were incubated with probes (0-20 μ M) for 24 h. Data are showed as the mean \pm SD.