Supplementary Data

Modify Carbon Dots with L-Phenylalanine for Rapid

Discriminating Tryptophan Enantiomers

Bozhi Lang ${ }^{1}$, Wenming Ma ${ }^{1}$, Xuan Liao ${ }^{1}$, Yaning Duan ${ }^{1}$, Cuiling

Ren ${ }^{1,2,}{ }^{*}$, Hongli Chen ${ }^{1}$

1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

2 Key Laboratory of Special Function Materials and Structure Design (MOE), Lanzhou University, Lanzhou 730000, China.

Fig. S1 XPS wide spectrum (A), high resolution XPS spectra of C1s (B), N1s (C) and O1s (D) of the original CDs

Fig. S2 FL intensity of the L-PCDs as a function of illumination time (A), concentrations of NaCl (B), temperature (C) and $\mathrm{pH}(\mathrm{D})\left(\lambda_{\mathrm{ex}}=380 \mathrm{~nm}\right)$.

Fig. S3 Enantiomeric responses of L-PCDs to common amino acids.

Fig. S4 The combined model optimized L-PCDs with D-Trp (A), L-Trp (B)

Fig. S5 FL spectra of L-Phe, D-Trp and L-Phe + D-Trp (A), L-Phe, L-Trp and L-Phe + L-Trp (B), UV-Vis spectra of L-Phe, D-Trp and L-Phe + D-Trp (C), and L-Phe, LTrp and L-Phe + L-Trp (D).

Table S1 Elemental composition of L-PCDs and original CDs

	C\%	$\mathrm{N} \%$	0%
L-PCDs	$\mathbf{7 8 . 5 8}$	$\mathbf{1 1 . 6 2}$	$\mathbf{9 . 8 1}$
original CDs	$\mathbf{6 7 . 2 1}$	$\mathbf{7 . 0 2}$	$\mathbf{2 5 . 5 9}$

