Supplementary material

Supplemented experimental section

Assembly of DNA tweezer:

The DNA tweezer structure was firstly formed by mixing of sequence (i-iv) with a molar ratio of 1:1. Then, the mixture was heated up to 95 °C and slowly cooled down to room temperature.

Assembly of HP:

The mixture containing 20 μL HP (10 $\mu M)$ was heated up to 95 °C and slowly cooled down to room temperature.

Determination of the extracted sEVs concentrations:

Nanoparticle tracking analysis (NTA) were performed to determine the concentration of sEVs by NTA, which was performed using the Nanosight NS300 followed by protocol according to fomer references ^{1, 2}.

Experimental parameters optimization:

The sEVs were incubated for 40 min in 200 μ L of PBS buffer with 0.5 μ M C2 probe and 1 μ M C1 probe, respectively. Following that, a hairpin (150 nM) and DNA tweezers (200 nM) were added to the mixture in 10 mM PBS (pH 7.4) containing 0.5 M NaCl. Following a three-hour incubation under different experimental temperatures, the sample was analyzed using a fluorescence spectrometer. Other experimental parameters optimization follows the former procedures.

Title	Sequences (5' to 3')
C1	AGC TCG GTA GAC TCA GGA TTT TTT TTT
C1	Cholesterol-TTT TTT TTT TCC TGA GTC TAC GTA GC
HP	CGG TAG CCT GTG CTA CCG AGC T
ii	GTT GGA GCG ACA TTA GAG AGC TAC AA-FAM
iii	DABCYL-GTA GCC TCC TGT CCT ATC TAT GAT GG
i	CTA ATG TCG CTC CAA CAA CCA TCA TAG ATA GGA C
iv	TTG TAG CAC AGG CTA CCG

Table S1. The sequences of used oligonucleotides in this work

Title	Mechanism	Target	Low limit of	Enzymes	Advantages and disadvantages	Ref
		molecule(s)	detection (particles/µL)			
The method	Proximity ligation+ DNA tweezer	CD63 and lipid bilayer	57	No	Advantages: high stability and anti-interference capability to free CD63 protein or cell lysis; high sensitivity; no enzymes were used. Disadvantages: could only be applied for sEVs detection.	
AcmPLA	Proximity ligation assisted RCA	CD63 and lipid bilayer	10 ³	T4 DNA ligase, phi29 polymerase, antibody,	Advantages: high stability and anti-interference capability to free CD63 protein or cell lysis; Disadvantages: five probes and two enzymes were used in this method; low sensitivity	1
AID-Cas	CRISPR- Cas12a assisted dual cycles	CD63 protein	10 ²	Cas12a, polymerase, Nt.BbvCI, T7 RNA polymerase	Advantages: high sensitivity; Disadvantages: low anti-interference capability to free CD63 protein	2
Allosteric probe based	SDA	CD63 protein	10 ²	DNA polymerase, endonuclease	Advantages: high sensitivity; Disadvantages: low anti-interference capability to free CD63 protein	3

Table S2. A brief comparison of the proposed method with former ones

RCA, rolling circle amplification; SDA, strand displacement amplification; AcmPLA, aptamer–cholesterol-mediated proximity ligation assay; AID-Cas, allosteric probe-initiated dual cycle amplification-assisted CRISPR-Cas12a.

References:

- 1. X. Zhao, C. Luo, Q. Mei, H. Zhang, W. Zhang, D. Su, W. Fu and Y. Luo, *Anal. Chem.*, 2020, **92**, 5411-5418.
- 2. X. Zhao, L. Zeng, Q. Mei and Y. Luo, ACS Sens, 2020, 5, 2239-2246.
- 3. Y. Zhou, F. Yu, H. Cheng and L. Ning, *ACS Omega*, 2021, **6**, 17776-17781.