A Mitochondria-specific NIR Fluorescence Probe for Dual-detection of Sulfur Dioxide and Viscosity in Living Cells and Mice

Xue-Yi Sun^a, Xi Zhang^b, Ke Gao^a, Wen-Jing Zhao^a, Yu-Ting Tian^a, Tao Liu^a* and Zhong-Lin Lu^b*

^aDepartment of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, PR China.

^bKey Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.

^cSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China Corresponding author: liutao@llu.edu.cn (Tao Liu); luzl@bnu.edu.cn (Zhong-Lin Lu)

Supporting Information

CONTENTS

I.	Synthesis and Characterization	S3
II.	Supporting Tables	S4
III.	Supporting Figures	S6
IV	.Spectra of Compounds	S 9

I. Synthesis and Characterization

Scheme S1 Schematic route for compound 2

Compound **2**: 2-methylbenzothiazole (2.98 g, 0.02 mol) and iodoethane (4.65 g, 0.03 mol) were added to 20 mL toluene, then the mixture was stirred for another 2 h at 120 °C. The reaction mixture was cool to room temperature, filtered, washed thoroughly with cold EtOH and dried under vacuum to obtain the product as a white solid (4.8 g, yield 80%). ¹H NMR (600 MHz, CD₃OD- d_4) δ 8.31 (d, J = 8.2 Hz, 1H), 8.28 (d, J = 8.6 Hz, 1H), 7.92 (t, J = 7.9 Hz, 1H), 7.82 (t, J = 7.7 Hz, 1H), 4.85 -4.83(q, J = 7.4 Hz, 2H), 3.30 (s, 3H), 1.59 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 177.51, 141.06, 129.96, 129.74, 128.65, 125.26, 117.26, 45.26, 17.23, 13.75. ESI–MS: calcd. for C₁₀H₁₂INS 178.07 (M – I-), found 178.08 (M – I-).

II. Supporting Tables

Table S1. Comparison of CMBT with reported fluorescent probes for SO₂ and Viscosity

Ref.	probes	detection of SO ₂ or Viscosity	λ _{em}	Aqueous Solubility	Targetability	Imaging application
3		Viscosity	600 nm		Mitochondria (0.98)	HeLa Cells
4	N CN CN	Viscosity	685 nm		Mitochondria (0.939)	HepG2 Cells
8		SO ₂ and Viscosity	625 nm	PBS/DMSO (9/1)	Lysosome (0.92)	HepG2 Cells
11	\$03 ⁻	SO_2	630 nm	PBS	Mitochondria (0.94)	HeLa Cells
12		SO_2	650 nm	EtOH/PBS (25/75)		HeLa Cells
13	S T	SO_2	690 nm	PBS	Mitochondria (0.953)	HeLa Cells
18		SO ₂ and Viscosity	680 nm	PBS/DMSO (7/3)	Lysosome (0.92)	A549 Cells
19	N-C-N-C-I	Viscosity	650 nm		Mitochondria (0.94)	HeLa Cells
21	No ho	SO ₂ and Viscosity	605 nm	HEPES/DM SO (1/1)	Mitochondria (0.85)	C6 Cells
37		Viscosity	620 nm		Endoplasmic Reticulum (0.95, 0.93)	MCF-7,4T1 Mice
38		SO_2	800 nm	PBS/DMSO (1/1)		CCK-8, Mice

40	-s N	Viscosity	720 nm		Mitochondria (0.94)	HeLa Cells
43		SO ₂ and Viscosity	625 nm	Water	Mitochondria (0.926)	HeLa Cells
45		SO ₂ and Viscosity	740 nm	PBS		HeLa Cells
This work	CI S-CO	SO ₂ and Viscosity	690 nm	PBS	Mitochondria (0.97)	HeLa Cells, Mice

III. Supporting Figures

Fig. S1 The time-dependent changes in the fluorescence spectra of CMBT (10 μ M) treated with 10 eq. SO_3^{2-} .

Fig. S2 The pseudo-first-order kinetic plot of the reaction of CMBT (10 μ M) treated with 10 eq. $SO_3^{2^-}$.

Fig. S3 UV-Vis spectra of probe **CMBT** (10 μM) in the presence of various anions (100 μM) in PBS buffer (pH 7.4). (1) Cys; (2) GSH; (3) Hcy; (4) NO₃⁻; (5) AcO⁻; (6) S₂⁻; (7) CO₃²⁻; (8) Cl⁻; (9) l⁻; (10) ClO⁻; (11) H₂O₂; (12) NO₂⁻; (13) ClO₄⁻; (14) SO₃²⁻.

Fig. S4 The ESI-MS of product obtained by reaction between CMBT and SO₃²⁻.

Fig. S5 Cytotoxicity assays of probe CMBT at different concentrations (0–40 μM) for HeLa cells.

Fig. S6 Confocal images of exogenous SO₂ in living cells. (a–d) Cells stained with probe **CMBT**; (e–h) Cells incubated with probe **CMBT** and Na₂SO₃. Blue channel: λ ex = 405 nm, λ em = 490–

530 nm. Red channel: $\lambda ex = 488$ nm, $\lambda em = 600-700$ nm. Scale bar = 20 μm .

Fig. S7 The average of fluorescent intensity of tumor site post-injection of CMBT, CMBT and nystatin, CMBT and endo-SO₂. Values are means \pm 3.

V. Spectra of Compounds

Fig. S8 1 H NMR spectra of compound 1 in DMSO- d_{6} (600 MHz, 298 K)

Fig. S9 13 C NMR spectra of compound 1 in DMSO- d_6 (101 MHz, 298K)

Fig. S10 The ESI-MS spectra of compound 1

Fig. S11 ¹H NMR spectra of compound 2 in CD₃OD (400 MHz, 298 K)

Fig. S12 13 C NMR spectra of compound 2 in DMSO- d_6 (101 MHz, 298 K)

Fig. S13 The ESI-MS spectra of compound 2

Fig. S14 ¹H NMR spectra of CMBT in DMSO-d₆ (600 MHz, 298 K)

Fig. S15 13 C NMR spectra of CMBT in DMSO- d_6 (101 MHz, 298 K)

Fig. S16 The HR-MS spectra of probe CMBT