A Mitochondria-specific NIR Fluorescence Probe for Dual-detection of Sulfur Dioxide and Viscosity in Living Cells and Mice Xue-Yi Sun^a, Xi Zhang^b, Ke Gao^a, Wen-Jing Zhao^a, Yu-Ting Tian^a, Tao Liu^a* and Zhong-Lin Lu^b* ^aDepartment of Chemical and Materials Engineering, Lvliang University, Lvliang 033001, PR China. ^bKey Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China. ^cSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China Corresponding author: liutao@llu.edu.cn (Tao Liu); luzl@bnu.edu.cn (Zhong-Lin Lu) # Supporting Information ## CONTENTS | I. | Synthesis and Characterization | S3 | |------|--------------------------------|------------| | II. | Supporting Tables | S4 | | III. | Supporting Figures | S6 | | IV | .Spectra of Compounds | S 9 | #### I. Synthesis and Characterization Scheme S1 Schematic route for compound 2 Compound **2**: 2-methylbenzothiazole (2.98 g, 0.02 mol) and iodoethane (4.65 g, 0.03 mol) were added to 20 mL toluene, then the mixture was stirred for another 2 h at 120 °C. The reaction mixture was cool to room temperature, filtered, washed thoroughly with cold EtOH and dried under vacuum to obtain the product as a white solid (4.8 g, yield 80%). ¹H NMR (600 MHz, CD₃OD- d_4) δ 8.31 (d, J = 8.2 Hz, 1H), 8.28 (d, J = 8.6 Hz, 1H), 7.92 (t, J = 7.9 Hz, 1H), 7.82 (t, J = 7.7 Hz, 1H), 4.85 -4.83(q, J = 7.4 Hz, 2H), 3.30 (s, 3H), 1.59 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 177.51, 141.06, 129.96, 129.74, 128.65, 125.26, 117.26, 45.26, 17.23, 13.75. ESI–MS: calcd. for C₁₀H₁₂INS 178.07 (M – I-), found 178.08 (M – I-). ### II. Supporting Tables Table S1. Comparison of CMBT with reported fluorescent probes for SO₂ and Viscosity | Ref. | probes | detection of SO ₂ or Viscosity | λ _{em} | Aqueous
Solubility | Targetability | Imaging application | |------|-------------------|---|-----------------|-------------------------|--|---------------------| | 3 | | Viscosity | 600 nm | | Mitochondria (0.98) | HeLa Cells | | 4 | N CN CN | Viscosity | 685 nm | | Mitochondria (0.939) | HepG2
Cells | | 8 | | SO ₂ and
Viscosity | 625 nm | PBS/DMSO (9/1) | Lysosome (0.92) | HepG2
Cells | | 11 | \$03 ⁻ | SO_2 | 630 nm | PBS | Mitochondria (0.94) | HeLa Cells | | 12 | | SO_2 | 650 nm | EtOH/PBS (25/75) | | HeLa Cells | | 13 | S T | SO_2 | 690 nm | PBS | Mitochondria (0.953) | HeLa Cells | | 18 | | SO ₂ and
Viscosity | 680 nm | PBS/DMSO (7/3) | Lysosome (0.92) | A549 Cells | | 19 | N-C-N-C-I | Viscosity | 650 nm | | Mitochondria (0.94) | HeLa Cells | | 21 | No ho | SO ₂ and
Viscosity | 605 nm | HEPES/DM
SO
(1/1) | Mitochondria (0.85) | C6 Cells | | 37 | | Viscosity | 620 nm | | Endoplasmic
Reticulum
(0.95, 0.93) | MCF-7,4T1
Mice | | 38 | | SO_2 | 800 nm | PBS/DMSO (1/1) | | CCK-8,
Mice | | 40 | -s N | Viscosity | 720 nm | | Mitochondria (0.94) | HeLa Cells | |-----------|---------|----------------------------------|--------|-------|----------------------|---------------------| | 43 | | SO ₂ and
Viscosity | 625 nm | Water | Mitochondria (0.926) | HeLa Cells | | 45 | | SO ₂ and
Viscosity | 740 nm | PBS | | HeLa Cells | | This work | CI S-CO | SO ₂ and
Viscosity | 690 nm | PBS | Mitochondria (0.97) | HeLa Cells,
Mice | #### **III. Supporting Figures** Fig. S1 The time-dependent changes in the fluorescence spectra of CMBT (10 μ M) treated with 10 eq. SO_3^{2-} . Fig. S2 The pseudo-first-order kinetic plot of the reaction of CMBT (10 μ M) treated with 10 eq. $SO_3^{2^-}$. **Fig. S3** UV-Vis spectra of probe **CMBT** (10 μM) in the presence of various anions (100 μM) in PBS buffer (pH 7.4). (1) Cys; (2) GSH; (3) Hcy; (4) NO₃⁻; (5) AcO⁻; (6) S₂⁻; (7) CO₃²⁻; (8) Cl⁻; (9) l⁻; (10) ClO⁻; (11) H₂O₂; (12) NO₂⁻; (13) ClO₄⁻; (14) SO₃²⁻. Fig. S4 The ESI-MS of product obtained by reaction between CMBT and SO₃²⁻. Fig. S5 Cytotoxicity assays of probe CMBT at different concentrations (0–40 μM) for HeLa cells. **Fig. S6** Confocal images of exogenous SO₂ in living cells. (a–d) Cells stained with probe **CMBT**; (e–h) Cells incubated with probe **CMBT** and Na₂SO₃. Blue channel: λ ex = 405 nm, λ em = 490– 530 nm. Red channel: $\lambda ex = 488$ nm, $\lambda em = 600-700$ nm. Scale bar = 20 μm . Fig. S7 The average of fluorescent intensity of tumor site post-injection of CMBT, CMBT and nystatin, CMBT and endo-SO₂. Values are means \pm 3. ### V. Spectra of Compounds Fig. S8 1 H NMR spectra of compound 1 in DMSO- d_{6} (600 MHz, 298 K) Fig. S9 13 C NMR spectra of compound 1 in DMSO- d_6 (101 MHz, 298K) Fig. S10 The ESI-MS spectra of compound 1 Fig. S11 ¹H NMR spectra of compound 2 in CD₃OD (400 MHz, 298 K) Fig. S12 13 C NMR spectra of compound 2 in DMSO- d_6 (101 MHz, 298 K) Fig. S13 The ESI-MS spectra of compound 2 Fig. S14 ¹H NMR spectra of CMBT in DMSO-d₆ (600 MHz, 298 K) Fig. S15 13 C NMR spectra of CMBT in DMSO- d_6 (101 MHz, 298 K) Fig. S16 The HR-MS spectra of probe CMBT