A Mitochondria-specific NIR Fluorescence Probe for Dualdetection of Sulfur Dioxide and Viscosity in Living Cells and Mice

Xue-Yi Sun^a, Xi Zhang^b, Ke Gao^{a,c}, Wen-Jing Zhao^a, Yu-Ting Tian^{a,c}, Tao Liu^{a*} and Zhong-Lin Lu^{b*}

^aDepartment of Chemical and Material Engineering, Lvuliang University, Lvliang 033001, PR China.

^bKey Laboratory of Radiopharmaceutics, Ministry of Education; College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.

^cSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China Corresponding author: liutao@llu.edu.cn (Tao Liu); luzl@bnu.edu.cn (Zhong-Lin Lu)

Supporting Information

CONTENTS

I.	Synthesis and Characterization	S3
II.	Supporting Tables	S4
III.	Supporting Figures	S6
IV	.Spectra of Compounds	S9

I. Synthesis and Characterization

Scheme S1 Schematic route for compound 2

Compound **2**: 2-methylbenzothiazole (2.98 g, 0.02 mol) and iodoethane (4.65 g, 0.03 mol) were added to 20 mL toluene, then the mixture was stirred for another 2 h at 120 °C. The reaction mixture was cool to room temperature, filtered, washed thoroughly with cold EtOH and dried under vacuum to obtain the product as a white solid (4.8 g, yield 80%). ¹H NMR (600 MHz, CD₃OD-*d*₄) δ 8.31 (d, *J* = 8.2 Hz, 1H), 8.28 (d, *J* = 8.6 Hz, 1H), 7.92 (t, *J* = 7.9 Hz, 1H), 7.82 (t, *J* = 7.7 Hz, 1H), 4.85 - 4.83(q, *J* = 7.4 Hz, 2H), 3.30 (s, 3H), 1.59 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.51, 141.06, 129.96, 129.74, 128.65, 125.26, 117.26, 45.26, 17.23, 13.75. ESI–MS: calcd. for C₁₀H₁₂INS 178.07 (M – I-), found 178.08 (M – I-).

II. Supporting Tables

	1	detection of SO ₂	•	Aqueous	Targetabilit	Imaging
Ref.	probes	or Viscosity	$\lambda_{\rm em}$	Solubility	У	application
3		Viscosity	600 nm		Mitochondria (0.98)	HeLa Cells
4	N CN CN	Viscosity	685 nm		Mitochondria (0.939)	HepG2 Cells
8		SO_2 and Viscosity	625 nm	PBS/DMSO (9/1)	Lysosome (0.92)	HepG2 Cells
11		SO ₂	630 nm	PBS	Mitochondria (0.94)	HeLa Cells
12		SO ₂	650 nm	EtOH/PBS (25/75)		HeLa Cells
13	N C C C C C C C C C C C C C C C C C C C	SO ₂	690 nm	PBS	Mitochondria (0.953)	HeLa Cells
18		SO ₂ and Viscosity	680 nm	PBS/DMSO (7/3)	Lysosome (0.92)	A549 Cells
19		Viscosity	650 nm		Mitochondria (0.94)	HeLa Cells
21		SO ₂ and Viscosity	605 nm	HEPES/DM SO (1/1)	Mitochondria (0.85)	C6 Cells
37		Viscosity	620 nm		Endoplasmic Reticulum (0.95, 0.93)	MCF-7,4T1 Mice
38		SO ₂	800 nm	PBS/DMSO (1/1)		CCK-8, Mice

Table S1. Comparison of CMBT with reported fluorescent probes for SO₂ and Viscosity

40		Viscosity	720 nm		Mitochondria (0.94)	HeLa Cells
43		SO ₂ and Viscosity	625 nm	Water	Mitochondria (0.926)	HeLa Cells
45		SO ₂ and Viscosity	740 nm	PBS		HeLa Cells
This work	JN-COTO	SO ₂ and Viscosity	690 nm	PBS	Mitochondria (0.97)	HeLa Cells, Mice

III. Supporting Figures

Fig. S1 The time-dependent changes in the fluorescence spectra of CMBT (10 μ M) treated with 10 eq. SO₃²⁻.

Fig. S2 The pseudo-first-order kinetic plot of the reaction of CMBT (10 μ M) treated with 10 eq. SO₃²⁻.

Fig. S3 UV-Vis spectra of probe **CMBT** (10 μM) in the presence of various anions (100 μM) in PBS buffer (pH 7.4). (1) Cys; (2) GSH; (3) Hcy; (4) NO₃⁻; (5) AcO⁻; (6) S₂⁻; (7) CO₃²⁻; (8) Cl⁻; (9) I⁻; (10) ClO⁻; (11) H₂O₂; (12) NO₂⁻; (13) ClO₄⁻; (14) SO₃²⁻.

Fig. S4 The ESI-MS of product obtained by reaction between CMBT and SO₃²⁻.

Fig. S5 Cytotoxicity assays of probe CMBT at different concentrations (0-40 µM) for HeLa cells.

Fig. S6 Confocal images of exogenous SO₂ in living cells. (a–d) Cells stained with probe CMBT; (e–h) Cells incubated with probe CMBT and Na₂SO₃. Blue channel: $\lambda ex = 405$ nm, $\lambda em = 490$ – 530 nm. Red channel: $\lambda ex = 488$ nm, $\lambda em = 600$ –700 nm. Scale bar = 20 µm.

Fig. S7 The average of fluorescent intensity of tumor site post-injection of CMBT, CMBT and nystatin, CMBT and endo-SO₂. Values are means \pm 3.

V. Spectra of Compounds

Fig. S8¹H NMR spectra of compound 1 in DMSO-*d*₆ (600 MHz, 298 K)

Fig. S9¹³C NMR spectra of compound 1 in DMSO- d_6 (101 MHz, 298K)

Fig. S10 The ESI-MS spectra of compound 1

Fig. S11¹H NMR spectra of compound 2 in CD₃OD (400 MHz, 298 K)

Fig. S12¹³C NMR spectra of compound 2 in DMSO-*d*₆ (101 MHz, 298 K)

Fig. S13 The ESI-MS spectra of compound ${\bf 2}$

Fig. S14 ¹H NMR spectra of CMBT in DMSO- d_6 (600 MHz, 298 K)

Fig. S15 ¹³C NMR spectra of **CMBT** in DMSO-*d*₆ (101 MHz, 298 K)

Fig. S16 The HR-MS spectra of probe CMBT