Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Fabrication and characterization of magnetic mesoporous nanoparticles for efficient determination and magnetic separation of sulfonamides in food samples

Mengmeng Zhang ^a , Wei Wang ^{b,c} , Lili Wu ^a , Zulei Zhang ^{b,c*} , Hongmei Wang ^c , Liping
Guo ^c , Ruobing Cheng ^b
^a Comprehensive Technology and Service Center of Jiaxing Customs, Jiaxing 314001
China
^b Analytical & Testing Center, Jiaxing University, Jiaxing 314001, China
^c School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314001
China

*Corresponding author

Email: jerry3641172@126.com, lei.li@mail.zjxu.edu.cn

Fax: +86-573-83646203; Tel: +86-573-83646203

1. Supporting data

Fig.S1 low-angle XRD spectra of Fe $_3O_4$ @Si O_2 @mSi O_2

Table S1. The mean matrix effects of the MSPE method (2.0 μ g/L of SAs, n=3).

Analyst -	Matrix effect		
	Milk	Pork	egg
SMZ	92.1±3.2%	91.8±4.6%	93.8±3.8%
SIZ	89.9±3.7%	92.5±5.5%	93.4±4.2%
SDZ	92.3±3.2%	91.3±3.2%	91.5±2.8%
SMD	93.4±3.0%	89.1±2.6%	92.9±3.8%