Electronic Supplementary Information (ESI)

A highly selective coumarin-based chemosensor for dual sensing of Cu²⁺ and

Zn²⁺ ions with logic gate integration and live cell imaging

Avanish Kumar Singh^a, Amit Kumar Singh^a, Sashikant Sharma^b, Vijay Kumar Sonkar^b and V. P. Singh^{*a}

^a Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (India)

^b Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi-221005 (India)

	Methods and measurements	S3-S4
Fig. S1	IR spectrum of CIH	S4
Fig. S2	¹ H NMR spectrum of CIH.	S5
Fig. S3	¹³ C NMR spectrum of CIH.	S5
Fig. S4	Mass spectrum of CIH.	S6
Fig. S5	UV-Vis titration spectra of CIH (20 μ M) in DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES	S6
	buffer solution (a) in the presence of increasing concentration of Cu^{2+} (0-lequiv.);	
	(b) in the presence of increasing concentration of Zn^{2+} (0-1equiv.).	
Fig. S6	(a) Limit of detection (LOD) plot, the change in fluorescence intensity at 504 nm	S7
	of CIH (20 μ M) as a function of Zn ²⁺ ions concentration (b) Benesi-Hildebrand	
	plot of CIH for determination of binding constant with Zn^{2+} .	
Fig. S7	(a) Fluorescence titration spectra of CIH (20 μ M, λ ex = 420 nm) in DMF:H ₂ O	S7
	(7:3, v/v, pH 7.4) HEPES buffer solution in the presence of Cu^{2+} (0- 1 equiv.) (b)	
	Limit of detection (LOD) plot, the change in fluorescence intensity at 509 nm of	
	CIH (20 μ M) as a function of Cu ²⁺ ions concentration (c) Benesi-Hildebrand plot	
	of CIH for evaluation of binding constant with Cu^{2+} and (d) Job's plot for	
	determination of binding stoichiometry for CIH-Cu ²⁺ .	
Fig. S8	Fluorescence intensity measurement of CIH (20 μ M) (a) after addition of various	S8
	metal ions (20 μ M) in DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution (b) in	
	the presence of Cu ²⁺ + other metal ions (20 μ M) in DMF:H ₂ O (7:3, v/v, pH 7.4)	
	HEPES buffer solution (c) in the presence of Zn^{2+} + other metal ions (20 μ M) in	
	DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution. ($\lambda ex = 420$ nm).	

Table of Contents

Fig. S9	Fluorescence titration spectra of CIH-Zn ²⁺ (20 μ M) with Cu ²⁺ (0-1equiv.) in	S8
	DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution.	
Fig. S10	Images of CIH, CIH-Zn ²⁺ , CIH-Zn ²⁺ -Cu ²⁺ and CIH-Zn ²⁺ -Cu ²⁺ -Zn ²⁺ in	S9
	DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution under (a) UV- illumination	
	and (b) Visible light. (c) Fluorescence spectra of CIH upon subsequent addition	
	of Zn^{2+} and Cu^{2+} .	
Fig. S11	Time-resolved fluorescence decay profile of CIH in presence and absence of	S9
	Zn^{2+}/Cu^{2+} , respectively in DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution.	
Fig. S12	¹ H NMR titration of CIH after addition of Zn^{2+} (0-1 equiv.) in DMSO–d ₆ .	S10
Fig. S13	IR spectrum of CIH - Zn^{2+} complex.	S10
Fig. S14	IR spectrum of CIH -Cu ²⁺ complex.	S11
Fig. S15	Mass spectrum of CIH -Zn ²⁺ complex.	S11
Fig. S16	Mass spectrum of CIH -Cu ²⁺ complex.	S12
Fig. S17	(a) A one-dimensional supramolecular structure of CIH-Zn ²⁺ complex in a	S12
	coordination polymer frame work (b) three-dimensional structure of CIH-Z n^{2+}	
	complex.	
Fig. S18	(a) Changes in emission intensity of CIH ($\lambda ex = 420$ nm) in the presence and	S13
	absence of Zn^{2+} and EDTA. Inset: Diagram depicting the emission output at 504	
	nm. (b) Schematic illustration of INHIBIT and the IMPLICATION logic gate. (c)	
	Changes in the emission intensity of CIH ($\lambda ex = 420$ nm) in the presence and	
	absence of Cu ²⁺ and EDTA. Inset: Diagram depicting the emission output at 509	
	nm. (d) truth table.	
Fig. S19	MTT assay plot showing treatment of SiHa cells with various concentration of	S13
	CIH (1, 5, 10, 20 and 50 µM) for 4 h.	
Table S1	Quantum yields and Fluorescence decay parameters of CIH before and after	S14
	treatment with Zn^{2+}/Cu^{2+} in DMF:H ₂ O (7:3, v/v, pH 7.4) HEPES buffer solution.	
Table S2	Important crystallographic data of CIH-Zn ²⁺ complex	S14-S15
Table S3	List of bond lengths for CIH-Zn ²⁺	S15-S16
Table S4	List of bond angles for CIH-Zn ²⁺	S16-S18
Table S5	Comparison of CIH with the previously reported sensors.	S18
	References	S19

Methods and measurements

Limit of detection (LOD)

The limit of detection for **CIH** was determined using fluorescence titration data and the IUPAC definition based on a plot of emission intensity vs. increasing Zn^{2+}/Cu^{2+} concentration. We repeated our observations eight times, measuring the emission intensity of **CIH** without Zn^{2+}/Cu^{2+} at every repetition and calculated the standard deviation of blank data. Fluorescence intensity data at 509 nm against Zn^{2+}/Cu^{2+} concentration were plotted to determine the slope. The detection limit is established using the following equation:¹

Limit of detection (LOD) =
$$\frac{3SD}{Slope(m)}$$

Where, the variables m, stands for the slope of intensity vs. sample concentration, and SD, stands for the standard deviation of blank readings.

Binding constant (Ka)

Using the Job's plot, the binding ratio of **CIH** to metal ions was calculated. The Benesi-Hildebrand equation was used to determine the binding constants (K_a) of **CIH** for Zn^{2+} and Cu^{2+} .²

$$\frac{I_o}{I - I_o} = \frac{a}{b - a} \left(\frac{1}{K_a[Metal]} + 1 \right)$$

Where, I and I₀ represent the intensity of **CIH** fluorescence at 509 nm in the presence and absence of Zn^{2+}/Cu^{2+} , respectively; a and b are constants; and [Metal] represents the concentration of Zn^{2+}/Cu^{2+} .

Fluorescence quantum yield measurements

The following equation was used to calculate quantum yield:³

$$Q = Q_r \left(\frac{I}{I_r}\right) \left(\frac{OD}{OD_r}\right) \left(\frac{n^2}{n_r^2}\right)$$

Where Q is the fluorescence quantum yield, I is the integrated fluorescence intensity, n is the refractive index of liquid, and OD is the optical density (absorption). The subscript r is used to represent the known quantum yield of reference quinine sulfate, which is 0.54 in 0.1 M H_2SO_4 .

Fluorescence decay measurements

To explore sensing properties, time-resolved fluorescence spectra were taken. The following equation has been used to calculate dynamic parameters:

$$y = A_1 * exp\left(-\frac{x}{\tau_1}\right) + A_2 * exp\left(-\frac{x}{\tau_2}\right) + y_0$$

The following equation was used for calculating the weighted mean lifetime:

$$<\tau>=(A_{1}\tau_{1}+A_{2}\tau_{2})/(A_{1}+A_{2})$$

Where, τ_1/τ_2 and A_1/A_2 are lifetimes (\tau) and the fractions or amplitudes (A), respectively.

The following equations are used to compute the radiative rate constant (K_r) and non-radiative rate constant (K_{nr}) :⁴

$$<\tau^{-1} \ge (K_r + K_{nr})$$
$$K_r = \frac{\Phi}{<\tau>}$$

Fig. S2 ¹H NMR spectrum of CIH

Fig. S4 Mass spectrum of CIH

Fig. S5 UV-Vis titration spectra of **CIH** (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (a) in the presence of increasing concentration of Cu²⁺ (0-1equiv.); (b) in the presence of increasing concentration of Zn²⁺ (0-1equiv.).

Fig. S6 (a) Limit of detection (LOD) plot, the change in fluorescence intensity at 504 nm of CIH (20 μ M) as a function of Zn²⁺ ions concentration (b) Benesi-Hildebrand plot of CIH for determination of binding constant with Zn²⁺.

Fig. S7 (a) Fluorescence titration spectra of **CIH** (20 μ M, λ ex = 420 nm) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution in the presence of Cu²⁺ (0- 1 equiv.) (b) Limit of detection (LOD) plot, the change in fluorescence intensity at 509 nm of **CIH** (20 μ M) as a function of Cu²⁺ ion concentration (c) Benesi-Hildebrand plot of **CIH** for evaluation of binding constant with Cu²⁺ and (d) Job's plot for determination of binding stoichiometry for **CIH**-Cu²⁺.

Fig. S8 Fluorescence intensity measurement of **CIH** (20 μ M) (**a**) after addition of various metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**b**) in the presence of Cu²⁺ + other metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**c**) in the presence of Zn²⁺ + other metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**c**) in the presence of Zn²⁺ + other metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**c**) in the presence of Zn²⁺ + other metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**c**) in the presence of Zn²⁺ + other metal ions (20 μ M) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution (**c**) buffer solution. (λ ex = 420 nm).

Fig. S9 Fluorescence titration spectra of **CIH-Zn²⁺** (20 μ M) with Cu²⁺ (0-1equiv.) in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution.

Fig. S10 Images of **CIH**, **CIH**-**Z** n^{2+} , **CIH**-**Z** n^{2+} -**C** u^{2+} and **CIH**-**Z** n^{2+} -**C** u^{2+} -**Z** n^{2+} in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution under (a) UV- illumination and (b) Visible light. (c) Fluorescence spectra of **CIH** upon subsequent addition of Z n^{2+} and C u^{2+} .

Fig. S11 Time-resolved fluorescence decay profile of CIH in presence and absence of Zn^{2+}/Cu^{2+} , respectively in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution.

Fig. S12 ¹H NMR titration of CIH after addition of Zn^{2+} (0-1 equiv.) in DMSO-d₆.

Fig. S13 IR spectrum of CIH- Zn^{2+} complex.

Fig. S14 IR spectrum of CIH-Cu²⁺ complex.

Fig. S15 Mass spectrum of CIH-Zn²⁺

Fig. S16 Mass spectrum of CIH-Cu²⁺

Fig. S17 (a) A one-dimensional supramolecular structure of CIH- Zn^{2+} complex in a coordination polymer frame work (b) three-dimensional structure of CIH- Zn^{2+} complex.

Fig. S18 (a) Changes in emission intensity of CIH ($\lambda ex = 420 \text{ nm}$) in the presence and absence of Zn²⁺ and EDTA. Inset: Diagram depicting the emission output at 504 nm. (b) Changes in the emission intensity of CIH ($\lambda ex = 420 \text{ nm}$) in the presence and absence of Cu²⁺ and EDTA. Inset: Diagram depicting the emission output at 509 nm. (c) Schematic illustration of INHIBIT and the IMPLICATION logic gate. (d) truth table.

Fig. S19 MTT assay plot showing treatment of SiHa cells with various concentration of CIH (1, 5, 10, 20 and 50 μ M) for 4 h.

Table S1 Quantum yields and fluorescence decay parameters of **CIH** before and after treatment with Zn^{2+}/Cu^{2+} in DMF:H₂O (7:3, v/v, pH 7.4) HEPES buffer solution.

Sample	A	τ (ns)	< τ >	φ	Kr(-s)	Knr(-s)
			(ns)			
CIH	0.521 (A1)	1.075(t 1)	2.055	10.41×10^{-3}	5.07×10^{6}	4.81×10^{8}
	0.348 (A2)	3.526 (τ2)				
CIH-Zn ²⁺	0.146 (A1)	0.99395(t1)	2.966	24.72×10^{-3}	8.33×10^{6}	3.29×10^{8}
	0.637 (A2)	3.41947(t2)				
CIH-Cu ²⁺	0.482 (A1)	0.691 (t1)	1.658	2.70 ×10 ⁻³	1.63×10^{6}	6.01×10^{8}
	0.403 (A2)	2.815 (t2)				

Table S2

Important crystallographic data of **CIH**-Zn²⁺ complex

CCDC No.	2305336
Empirical formula	$C_{34}H_{24}FN_6O_{11}PZn_2$
Formula weight	873.30
Temperature (K)	293
Crystal system	triclinic
Space group	P-1
a (Å)	11.6235(3)
b (Å)	12.0608(5)
c (Å)	16.9201(7)
α (°)	77.785(4)
β (°)	87.986(3)
γ (°)	77.824(3)
Volume (Å ³)	2266.04(15)
Z	2
Density (g/cm ³)	1.280
μ (mm ⁻¹)	2.155

F(000)	884.0
Crystal size (mm ³)	$0.025 \times 0.02 \times 0.01$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection (°)	5.344 to 144.238
Reflections collected	29742
Independent reflections	8843 [$R_{int} = 0.0494, R_{sigma} = 0.0489$]
Data/restraints/parameters	8843/0/502
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0665, wR_2 = 0.1947$
Final R indexes [all data]	$R_1 = 0.0821, wR_2 = 0.2047$

 $\label{eq:rescaled_$

 Table S3 List of bond lengths for CIH-Zn²⁺

Aton	n Atom	Length/Å	Atom	Atom	Length/Å
Znl	04	1.989(3)	08	C32	1.323(6)
Znl	03	2.055(3)	C13	C12	1.493(6)
Znl	N4	2.053(4)	C13	C14	1.395(6)
Zn1	09	1.965(4)	C13	C15	1.386(7)
Znl	N1	2.092(4)	C26	C27	1.454(6)
Zn2	O6	2.144(3)	C26	C28	1.373(6)
Zn2	05	2.068(3)	C26	C24	1.454(6)
Zn2	O10 ¹	2.075(4)	C23	C22	1.501(6)
Zn2	N3 ²	2.071(4)	C28	C29	1.413(7)
Zn2	N6	2.088(4)	C24	C25	1.507(6)
P1	O10	1.450(4)	C17	C15	1.387(6)
P1	09	1.448(4)	C22	C21	1.391(6)
P1	011	1.454(4)	C22	C20	1.394(7)
P1	F1	1.473(5)	C29	C34	1.385(7)
07	C27	1.355(5)	C29	C30	1.408(7)
O7	C34	1.377(6)	C34	C33	1.389(7)
06	C27	1.235(5)	C5	C3	1.379(7)

Atom	Length/Å	Atom	Atom	Length/Å
C23	1.265(5)	C5	C6	1.386(7)
C5	1.379(6)	C21	C19	1.383(6)
С9	1.357(6)	C8	C10	1.486(7)
C12	1.274(5)	C8	С9	1.449(7)
C9	1.216(6)	C8	C7	1.363(7)
N6	1.391(5)	C10	C11	1.499(7)
C23	1.306(6)	C14	C16	1.380(7)
C1	1.343(6)	C1	C3	1.385(7)
C17	1.327(6)	C1	C2	1.405(8)
C16	1.349(6)	C30	C31	1.354(7)
C24	1.299(6)	C7	C6	1.415(7)
N1	1.395(5)	C31	C32	1.394(8)
C12	1.312(6)	C6	C4	1.405(7)
C19	1.333(6)	C20	C18	1.352(7)
C18	1.349(6)	C32	C33	1.410(7)
C10	1.301(6)	C2	C4	1.359(8)
	Atom C23 C5 C9 C12 C9 N6 C23 C1 C17 C16 C24 N1 C12 C12 C19 C18 C10	AtomLength/ÅC23 $1.265(5)$ C5 $1.379(6)$ C9 $1.357(6)$ C12 $1.274(5)$ C9 $1.216(6)$ N6 $1.391(5)$ C23 $1.306(6)$ C1 $1.343(6)$ C17 $1.327(6)$ C16 $1.349(6)$ C24 $1.299(6)$ N1 $1.395(5)$ C12 $1.312(6)$ C18 $1.349(6)$ C10 $1.301(6)$	AtomLength/ÅAtomC231.265(5)C5C51.379(6)C21C91.357(6)C8C121.274(5)C8C91.216(6)C8N61.391(5)C10C231.306(6)C14C11.343(6)C1C171.327(6)C1C161.349(6)C30C241.299(6)C7N11.395(5)C31C121.312(6)C6C191.333(6)C20C181.349(6)C32C101.301(6)C2	AtomLength/ÅAtomAtomC231.265(5)C5C6C51.379(6)C21C19C91.357(6)C8C10C121.274(5)C8C9C91.216(6)C8C7N61.391(5)C10C11C231.306(6)C14C16C11.343(6)C1C3C171.327(6)C1C2C161.349(6)C30C31C241.299(6)C7C6N11.395(5)C31C32C191.333(6)C20C18C181.349(6)C32C33C101.301(6)C2C4

Table S4 List of bond angles for CIH-Zn $^{2+}$

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
04	Zn1	03	148.18(17)	C28	C26	C24	119.8(4)
O4	Zn1	N4	96.27(15)	05	C23	N5	128.0(4)
O4	Zn1	N1	78.41(14)	05	C23	C22	117.7(4)
O3	Zn1	N1	83.86(15)	N5	C23	C22	114.3(4)
N4	Zn1	O3	90.24(15)	07	C27	C26	119.1(4)
N4	Zn1	N1	157.78(18)	O6	C27	07	113.3(4)
09	Zn1	O4	99.50(17)	O6	C27	C26	127.6(4)
09	Zn1	03	109.76(18)	C26	C28	C29	123.9(4)
09	Zn1	N4	101.15(19)	N6	C24	C26	120.3(4)
09	Zn1	N1	101.01(19)	N6	C24	C25	121.9(4)
05	Zn2	O6	161.42(12)	C26	C24	C25	117.9(4)
05	Zn2	O10 ¹	94.16(16)	N3	C17	C15	122.2(4)
05	Zn2	N3 ²	95.87(14)	C21	C22	C23	120.9(4)
05	Zn2	N6	77.52(13)	C21	C22	C20	117.6(4)

Atom Atom		n Atom	AtomAngle/°AtomAtom		Atom	Atom	Angle/°	
O10 ¹	Zn2	O6	91.56(15)	C20	C22	C23	121.5(4)	
O10 ¹	Zn2	N6	98.27(15)	C34	C29	C28	116.9(4)	
N3 ²	Zn2	O6	101.45(14)	C34	C29	C30	118.1(4)	
N3 ²	Zn2	O10 ¹	93.24(17)	C30	C29	C28	124.8(4)	
N3 ²	Zn2	N6	167.08(16)	07	C34	C29	120.7(4)	
N6	Zn2	O6	84.17(13)	07	C34	C33	117.1(4)	
O10	P1	O11	112.1(2)	C29	C34	C33	122.2(5)	
O10	P1	F1	109.4(3)	O2	C5	C3	116.9(5)	
09	P1	O10	107.5(3)	O2	C5	C6	119.0(4)	
09	P1	O11	110.0(3)	C3	C5	C6	124.1(5)	
09	P1	F1	107.9(3)	C19	C21	C22	119.2(4)	
011	P1	F1	109.9(3)	С9	C8	C10	121.3(4)	
C27	07	C34	122.7(4)	C7	C8	C10	121.1(5)	
C27	O6	Zn2	124.5(3)	C7	C8	С9	117.7(5)	
C23	05	Zn2	109.1(3)	N1	C10	C8	119.7(4)	
C9	02	C5	123.4(4)	N1	C10	C11	122.3(4)	
C12	O4	Zn1	111.0(3)	C8	C10	C11	117.9(4)	
C9	03	Zn1	126.8(3)	02	С9	C8	118.7(4)	
P1	O10	$Zn2^3$	143.0(3)	03	С9	O2	112.4(4)	
C23	N5	N6	111.0(4)	03	С9	C8	128.9(5)	
C17	N3	Zn2 ⁴	121.9(3)	C16	C14	C13	119.8(4)	
C17	N3	C16	118.8(4)	N3	C16	C14	122.0(4)	
C16	N3	Zn2 ⁴	119.3(3)	01	C1	C3	116.9(5)	
N5	N6	Zn2	112.0(3)	01	C1	C2	122.4(5)	
C24	N6	Zn2	132.6(3)	C3	C1	C2	120.7(5)	
C24	N6	N5	115.4(4)	C13	C15	C17	120.0(4)	
C12	N2	N1	109.7(4)	C31	C30	C29	121.0(5)	
C19	N4	Zn1	118.2(3)	N4	C19	C21	122.3(4)	
C19	N4	C18	118.2(4)	C8	C7	C6	122.5(5)	
C18	N4	Zn1	122.6(3)	C30	C31	C32	120.7(5)	
P1	09	Zn1	140.6(3)	C5	C3	C1	117.3(5)	
N2	N1	Zn1	111.6(3)	C5	C6	C7	118.7(5)	
C10	N1	Zn1	130.1(3)	C5	C6	C4	116.5(5)	

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C10	N1	N2	116.7(4)	C4	C6	C7	124.8(5)
C14	C13	C12	123.1(4)	C18	C20	C22	119.8(5)
C15	C13	C12	119.6(4)	08	C32	C31	120.8(5)
C15	C13	C14	117.3(4)	08	C32	C33	119.2(5)
O4	C12	N2	127.7(4)	C31	C32	C33	120.0(5)
O4	C12	C13	116.4(4)	C34	C33	C32	118.0(5)
N2	C12	C13	115.9(4)	C4	C2	C1	119.8(5)
C27	C26	C24	123.4(4)	N4	C18	C20	122.8(5)
C28	C26	C27	116.7(4)	C2	C4	C6	121.6(6)

 Table S5 Comparison of CIH with the previously reported sensors.

S. No.	Working media	Analyte	Detection limit (M)	Applications	Reversibility	Ref.
1	CH ₃ OH: H ₂ O	Zn^{2+} ,	Zn ²⁺ : 3.21×10^{-8}	Logic gates, live	Yes	5
	(9:1, pH 7.4)	Cu^{2+}	Cu ²⁺ : 2.13×10^{-8}	cell imaging		
2	CH ₃ CN	Zn^{2+} ,	$Zn^{2+}: 2.41 \times 10^{-6}$	Logic gates	Yes	6
		Cu^{2+}	Cu ²⁺ : 4.23×10^{-6}			
3	THF:H ₂ O	Zn^{2+} ,	Zn ²⁺ : 1.8×10^{-6}	live cell imaging	No	
	(5:95)	Cu^{2+}	Cu ²⁺ : 2.3×10^{-7}			7
4	DMSO:water	Zn^{2+} ,	Zn ²⁺ : 3.5×10^{-8}	Logic gates, live	Yes	8
	(1:1)	Cu^{2+}	Cu ²⁺ : 1.46×10^{-6}	cell imaging		
5	DMSO/H ₂ O	Zn^{2+} ,	Zn ²⁺ : 6. 8 × 10 ⁻⁸	Logic gates	No	9
	(4:1, v/v)	Cu^{2+}	Cu ²⁺ : 2.3×10^{-8}			
6	HEPES Buffer	Zn^{2+} ,	Zn ²⁺ : 2.29×10^{-9}	Logic gates, live	Yes	10
		Cu^{2+}	Cu ²⁺ : 3.67×10^{-9}	cell imaging		
7	HEPES Buffer	Zn^{2+} ,	Zn ²⁺ : 13.2×10^{-9}	Logic gates, live	No	11
		Cu^{2+}	Cu ²⁺ : 4.1×10^{-9}	cell imaging		
8	EtOH: H ₂ O	Zn^{2+} ,	$Zn^{2+}: 72 \times 10^{-9}$	Logic gates, live	Yes	12
	(1:99)	Cu ²⁺	$Cu^{2+}: 141 \times 10^{-9}$	cell imaging		
9	DMF:H ₂ O (7:3,	Zn^{2+} ,	Zn ²⁺ : 3.49×10^{-9}	Logic gates, live	Yes	This
	pH 7.4) HEPES	Cu^{2+}	Cu ²⁺ : 5.36×10^{-9}	cell imaging,		Work
				mitotracking		

References

- 1 G. L. Long and J. D. Winefordner, Anal. Chem., 2008, 55, 712A-724A.
- 2 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 2002, 71, 2703–2707.
- 3 K. Nawara and J. Waluk, Anal. Chem., 2017, 89, 8650–8655.
- K. R. Barqawi, Z. Murtaza and T. J. Meyer, Calculation of Relative Nonradiative Decay Rate Constants from Emission Spectral Profiles. Polypyridyl Complexes of Ru(II), 1991, vol. 95.
- 5 P. Das, S. Singh Rajput, M. Das, S. Laha, I. Choudhuri, N. Bhattacharyya, A. Das, B. Chandra Samanta, M. Mehboob Alam and T. Maity, *J. Photochem. Photobiol. A Chem.*, 2022, 427, 113817.
- 6 R. Arabahmadi, J. Photochem. Photobiol. A Chem., 2022, 426, 113762.
- 7 B. Zha, S. Fang, H. Chen, H. Guo and F. Yang, Spectrochim. Acta, Part A, 2022, 269, 120765.
- 8 J. Shree Ganesan, S. Gandhi, K. Radhakrishnan, A. Balasubramaniem, M. Sepperumal and S. Ayyanar, *Spectrochim. Acta, Part A*, 2019, **219**, 33-43
- 9 Y. Sun, W. Ding, J. Li, Y. Jia, G. Guo and Z. Deng, J. Mol. Struct., 2022, 1252, 132219.
- P. Ghorai, S. Banerjee, D. Nag, S. K. Mukhopadhyay and A. Saha, J. Lumin., 2019, 205, 197–209.
- 11 P. Wang, S. Xue and X. Yang, Microchemical Journal, 2020, 158, 105147.
- 12 X. He, Q. Xie, J. Fan, C. Xu, W. Xu, Y. Li, F. Ding, H. Deng, H. Chen and J. Shen, *Dyes and Pigments*, 2020, **177**, 108255.