SUPPLEMENTARY MATERIAL

A biphasic accelerated strand exchange amplification strategy for culture-independent and rapid detection of *Salmonella enterica* in food samples

Xiaojun Zhang‡^a, Xiujuan Wang‡^a, Binghui Shi^a, Junfeng Li^a, Yaofang Fan^a, Yong Li^a, Chao Shi^b, Cuiping Ma^{a,*}

^a Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.

^b Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.

‡ These authors contributed equally to this work.

 * Corresponding author. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
 Email address: mcp169@163.com

<i>monella enterica</i> strain <i>fimY</i> gene P051213.1 ^b 3426259-3426297)	CGCTTAACCAGCTACGCGCGCGCTCAGTT
2P051213.1 ^b 3426259-3426297)	CCCAACAAACC
	GGCAACAAAGC
	CGCTTAACCAGCTACGCG
	GCTTTGTTGCCAACTGAGC
	TCGCACCGTCAAAGGAACCGTAAAGC
	GCATTATCGATCAGTACCAGCCGTCT
	ession number. ^b The position of

Table S1 Sequences information used in this work

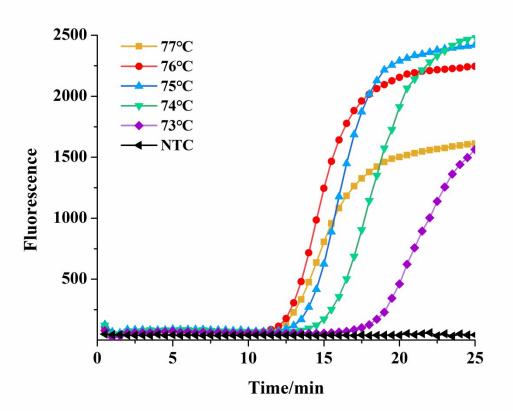
underlined portion is the same sequence as that of primer F1. The sequence complementary to primer R1 is shown in bold. ^{*c*} The primers of real-time PCR were designed according to Chinese national standard (GB/T 28642-2012).

Table S2 The performance of the biphasic ASEA method compared with other bacteria

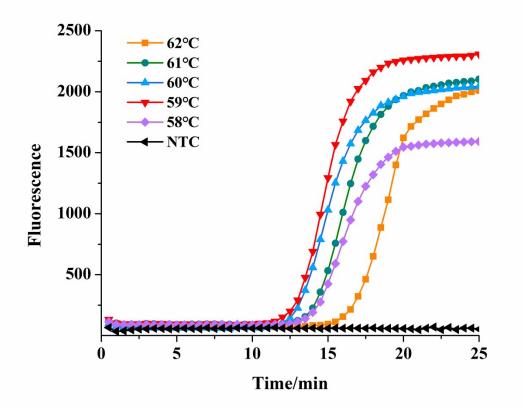
detection methods

Detection method	Detection limit (CFU/mL)	Assay time (min)	Reference
DNA aptamer-enzyme-linked colorimetric method	<10 ³	30-40	1
LAMP-lateral flow dipstick	3×10^2	90	2
Biacore surface plasmon resonance (SPR)-based biosensor method	23	<60	3
Immunosensing method	10	30	4
Photosensitization colorimetric method	13 (Salmonella in pure culture)	65	5
Fluorescent lateral flow immunoassay method	50 cells/mL	15	6
Biphasic ASEA method	50 (Salmonella in milk sample)	50	This work

Table S3 Biphasic ASEA and gold standard culture-based methods for detection of S.


enterica in 82 food samples

	Samples	Detection results		
Kind of samples*	number*	Biphasic ASEA (this study)	Culture-based method	
Milk	1-9			
	10-14			
	15-19			
	20-23			
Scallop	24-30			
	31			
	32-36			
Orietan	37-39			
Oyster	40			
	41-43			
	44-47			
D1-	48			
Duck	49-55			
	56-58			
	59-61			
Lettuce	62-66			
	67			
	68			
	69-70			
C 1	71-77			
Cucumber	78	-		
	79-82			


*The 82 samples included 19 of milk, 12 of scallop, 12 of oyster, 15 of duck, 10 of lettuce, and 14

of cucumber.

 \Box represented that *S. enterica* was detected as positive; \Box represented that *S. enterica* was detected as negative.

Fig. S1 Real-time fluorescence curves of biphasic ASEA reaction with serial initial Td values from 73 to 77°C. Non-targeted control (NTC) was conducted with DNase-free water as the target.

Fig. S2 Real-time fluorescence curves of biphasic ASEA reaction with serial Tr values from 58 to 62°C. NTC was conducted with DNase-free water as the target.

References

- 1. J. G. Bruno, *Journal of Microbiological Methods*, 2022, **193**, 106406.
- 2. W. Nuchchanart, P. Pikoolkhao, C. Saengthongpinit, *Animal Bioscience*, 2023, **36**, 654-670.
- 3. J. W. W. C. D. J. Irudayaraj, *Journal of Food Process Engineering*, 2006, **29**, 373-385.
- 4. Y. You, S. Lim, J. Hahn, Y. J. Choi and S. Gunasekaran, *Biosensors and Bioelectronics*, 2018, **100**, 389-395.
- 5. H. Wang, Q. Yang, H. Xu, Y. Zhang, X. Lu and W. Zhang, *European Food Research and Technology*, 2023, **249**, 2067-2075.
- S. Zheng, X. Yang, B. Zhang, S. Cheng, H. Han, Q. Jin, C. Wang and R. Xiao, *Food Chemistry*, 2021, 363, 130400.