The preparation and dual-mode detection of ascorbic acid based on poly(N-

isopropylacrylamide) nanogel with oxidase-like activity

Yuhan Zhang, Qinze Liu*, Qian Lu*, Zhi-zhou Yang, Sheng Gao, Xian Zhang*

School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China

*Correspondence authors E-mail: liuqinze@qlu.edu.cn (C.D. Q), qluqlu@qlu.edu.cn (Q. L), zhangx@qlu.edu.cn (X. Z)

Results

			Size (d.n	% Intensity:	St Dev (d.n
Z-Average (d.nm):	532.3	Peak 1:	566.7	100.0	144.5
Pdl:	0.055	Peak 2:	0.000	0.0	0.000
Intercept:	0.946	Peak 3:	0.000	0.0	0.000
Result quality	Good				

Figure S1. Particle size distribution curve of PNIPAM NG (5:1).

			Size (d.n	% Intensity:	St Dev (d.n
Z-Average (d.nm):	523.8	Peak 1:	591.1	100.0	214.3
Pdl:	0.108	Peak 2:	0.000	0.0	0.000
Intercept:	0.967	Peak 3:	0.000	0.0	0.000
D	0				

Figure S2. Particle size distribution curve of PNIPAM NG (6:1).

			Size (d.n	% Intensity:	St Dev (d.n
Z-Average (d.nm):	514.9	Peak 1:	534.6	100.0	115.2
Pdl:	0.002	Peak 2:	0.000	0.0	0.000
Intercept:	0.968	Peak 3:	0.000	0.0	0.000
Result quality	Good				

Figure S3. Particle size distribution curve of PNIPAM NG (7:1).

Results

Results

			Size (d.n	% Intensity:	St Dev (d.n
Z-Average (d.nm):	577.1	Peak 1:	633.1	98.1	245.8
Pdl:	0.178	Peak 2:	5010	1.9	603.3
Intercept:	0.944	Peak 3:	0.000	0.0	0.000
Pocult quality	Good				

Figure S4. Particle size distribution curve of PNIPAM NG (8:1).

Figure S5. (A) FTIR spectra of PNIPAM NG, NIPAM and Bis. (B) FTIR spectra of PNIPAM NG, NIPAM and Bis in the range 1400-1800 cm⁻¹.

Figure S6. XRD spectrum of PNIPAM NG.

Figure S7. DSC spectrum of PNIPAM NG.

Figure S8. Photographs of PNIPAM NG at (A) 70°C (B) 25°C.

Table S1. Comparison of Mie constant (K_m) and maximum reaction rate (V_{max}) for different catalysts with OPD as the substrate.

Catalyst	K _m (mM)	V _{max} (10 ⁻⁸ M·s ⁻¹)	Ref.
NiFe ₂ O ₄	8.4	0.86	1
CuO	6.78	0.52	2
CuO@E. coli	3.64	1.05	2
Ru NPs	56.92	0.01	3
PNIPAM NG	7.617	0.15	This work

Table S2. Comparison of AA detection by different nanomaterials.

Catalyst	Line range(µM)	Method	LOD (µM)	Ref.
CDs	1-30	colorimetric	1.530	4
Cu-ICA	0.5-5	colorimetric	0.130	5
N-CQDs	5-40	colorimetric	1.770	6
PNIPAM NG	10-90	colorimetric	1.199	This work
CA-CDs	5-100	fluorescence	0.150	7
Cu NCs	0.3-50	fluorescence	0.144	8
PVP-Pt	2~50	fluorescence	1.170	9
PNIPAM NG	1-100	fluorescence	0.283	This work

Reference

- 1. F. Vetr, Z. Moradi-Shoeili and S. Özkar, *Applied Organometallic Chemistry*, 2018, **32**, e4465.
- 2. S. Deng, Y. Tu, L. Fu, J. Liu and L. Jia, *Microchimica Acta*, 2022, **189**, 471.
- 3. G.-J. Cao, X. Jiang, H. Zhang, T. R. Croley and J.-J. Yin, *RSC Advances*, 2017, 7, 52210-52217.
- 4. J. Li, Y. Zhou, Y. Xiao, S. Cai, C. Huang, S. Guo, Y. Sun, R.-B. Song and Z. Li, Food Chemistry, 2023, 405, 134749.
- 5. J.-X. Li, J.-L. Wang, T.-Q. Chai and F.-Q. Yang, *Heliyon*, 2023, 9, e22099.
- 6. P. K. Yadav, V. K. Singh, S. Chandra, D. Bano, V. Kumar, M. Talat and S. H. Hasan, *ACS Biomaterials Science & Engineering*, 2019, **5**, 623-632.
- 7. Z. Lin, Q. Zeng, W. Yao, W. Chen, C. Cai, J. Yang, X. Lin and W. Chen, *Food Chemistry*, 2024, **437**, 137928.
- 8. C. Liu, Y. Cai, J. Wang, X. Liu, H. Ren, L. Yan, Y. Zhang, S. Yang, J. Guo and A. Liu, *ACS Applied Materials & Interfaces*, 2020, **12**, 42521-42530.
- 9. X. Liu, M. Tian, C. Li and F. Tian, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2021, **625**, 126985.