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1. Synthetic procedures
Synthesis of 5-(4-(dimethylamino)phenyl)thiophene-2-carbaldehyde (3a).

Aldehyde 3a was prepared according to the previous reported method with minor
modifications.! (4-(dimethylamino)phenyl)boronic acid 1a (330 mg, 2 mmol) and 5-
bromothiophene-2-carbaldehyde 2 (382 mg, 2 mmol) were dissolved in a mixture of
dioxane (5 mL), aqueous K,CO; (2 mL, 4 M) and ethanol (2 mL). And then [Pd(PPhs),]
(69 mg, 0.06 mmol) was added immediately. The mixture was heated to 85 °C and
stirred for 4 h under Ar atmosphere. After the reaction was completed, the mixture was
cooled down to room temperature. Water (30 mL) was added to quench the reaction
and the mixture was extracted with ethyl acetate (3 x 30 mL). The combined organic
layers were dried by anhydrous Na,SO,. After filtered and evaporated, the residue was
purified by silica gel chromatography with eluent of petroleum ether/ethyl acetate (v/v
= 4:1) to afford a yellow solid. Yield: 88%. Melting point: 245-248 °C. '"H NMR (400
MHz, CDCls) 6 9.82 (s, 1H), 7.68 (d, J=4.0 Hz, 1H), 7.56 (d, J= 8.8 Hz, 2H), 7.24 (d,
J=4.0 Hz, 1H), 6.73 (d, J= 8.4 Hz, 2H), 3.02 (s, 6H); *C NMR (100 MHz, CDCl;) &
182.43, 155.99, 151.07, 140.12, 138.10, 127.52, 121.57, 120.92, 112.20, 40.27.
Synthesis of 5-(4-(diphenylamino)phenyl)thiophene-2-carbaldehyde (3b).

The reaction was carried out according to the procedure used for the synthesis of
3a by using 1b as starting material. Yellow solid. Yield: 82%. Melting point: 218-220
°C. 'TH NMR (400 MHz, DMSO-dg) 6 9.87 (s, 1H), 8.00 (d, /= 4.0 Hz, 1H), 7.70 (d, J
= 8.8 Hz, 2H), 7.61 (d, /= 4.0 Hz, 1H), 7.47 — 7.26 (m, 4H), 7.21 — 7.06 (m, 6H), 6.97
(d, J = 8.7 Hz, 2H); 13C NMR (100 MHz, CDCl;) & 182.63, 154.60, 149.15, 146.97,
141.30, 137.80, 129.50, 127.28, 126.12, 125.18, 123.89, 122.91, 122.39.

Synthesis of 4-(1,1,2-trimethyl-1H-benzo[e]indol-3-ium-3-yl)butane-1-sulfonate (5a).

Compound Sa was prepared according to the previous reported method with minor
modifications.? 1,4-Butylenesulfone (3.07 mL, 30 mmol) and 1,1,2-trimethyl-1H-
benzo[e]indole 4 (2.09 g, 10 mmol) were added into a 100 mL round bottom flask. The
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mixture was heated to 135 °C and stirred for 2 h under Ar atmosphere. After cooling
down to room temperature, ethyl acetate was added and the mixture was treated by
ultrasound to produce precipitation. The obtained precipitation was filtered and washed
with ethyl acetate. The target compound was achieved as light blue solid. Yield: 89%.
Melting point: 161-164 °C. 'H NMR (400 MHz, DMSO-dy) 8 8.36 (d, J= 8.3 Hz, 1H),
8.28 (d,J=8.9 Hz, 1H), 8.24 - 8.19 (d, /= 8.9 Hz, 2H), 7.78 (t,J=7.1 Hz, 1H), 7.72
(t,J=7.3 Hz, 1H), 4.61 (t, J = 7.8 Hz, 2H), 2.95 (s, 3H), 2.56 — 2.50 (m, 2H), 2.04 (p,
J=17.4Hz,2H), 1.84 —1.72 (m, 8H); 3C NMR (100 MHz, DMSO-dj) 4 196.82, 139.09,
137.35, 133.48, 131.12, 130.18, 128.80, 128.74, 127.66, 123.85, 113.94, 55.91, 50.60,
47.98, 26.69, 22.61, 22.05, 14.14.
Synthesis of 3-ethyl-1,1,2-trimethyl-1H-benzo[e]indol-3-ium iodide (5b).

5b was prepared according to the previous reported method with minor
modifications.? Iodoethane (880 uL, 11 mmol) was added dropwise to a mixture of 4
(2.09 g, 10 mmol) in o-dichlorobenzene (8 mL), then the reaction was heated to 110 °C
and stirred for 6 h under Ar atmosphere. After cooling down to room temperature, ethyl
acetate was added and the mixture was treated by ultrasound to produce precipitation.
The obtained precipitation was filtered and washed with ethyl acetate. The target
compound was achieved as gray solid. Yield: 65%. Melting point: 110-113 °C. '"H NMR
(400 MHz, DMSO-d) 6 8.39 (d, J= 8.3 Hz, 1H), 8.32 (d, /= 8.9 Hz, 1H), 8.24 (d, J =
8.1 Hz, 1H), 8.19 (d, J= 8.9 Hz, 1H), 7.81 (t,J=7.2 Hz, 1H), 7.74 (t, J= 7.3 Hz, 1H),
4.65 (q,J= 7.3 Hz, 2H), 2.98 (s, 3H), 1.78 (s, 6H), 1.53 (t, J= 7.3 Hz, 3H); 13C NMR
(100 MHz, DMSO-dg) & 196.39, 138.65, 137.48, 133.48, 131.17, 130.18, 128.87,
127.72,127.70, 123.88, 113.68, 55.93, 43.87, 21.97, 14.28, 13.40.

2. Quantum yield

The quantum yield was measured according to the previous reported procedure
using indocyanine green (ICG) as a reference (@gs) = 0.13 in DMSO).* Probes were
dissolved in dichloromethane or normal saline (NS), The quantum yield was calculated

using the following equation:

Drx) = Ppes) (As Fy | Ax Fs) (11x ns)?
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Where @y is the fluorescence quantum yield of the probe, Ay and Ay are the
absorbance of HCYBAT-1-3 (HCYBATS) and ICG at 650 nm (< 0.05), respectively.
The area under the curve (AUC) of ICG and HCYBATS from 700-900 nm with 650
nm excitation was calculated as Fg and Fy, and 7 is the refractive index of the solvents.

3. pH stability assessment

10 uM stock solution of the three probes were dissolved in buffer solution,

fluorescence intensity was recorded in a wide pH range (4.0-10.0).

4. Photostability assessment

10 uM probe DMSO solutions were irradiated by a 60 W iodine-tungsten lamp.
Fluorescence intensity was recorded at different time points. The fluorescence intensity

at 0 h was set as a reference (F)).

5. Colloidal stability assessment

HCYBATS (10 uM) were incubated at 37 °C with water, saline, and fetal bovine

serum (FBS) for 2 h and photographed at different time points.
6. The measurement of lipophilicity (LogP)

Lipophilicity was evaluated as LogP value, which was performed according to the
reported flask shaking method.’ Probes (20 uL, 1 mM in DMSO) were partitioned in a
mixture of n-octanol (0.99 mL) and NS (0.99 mL) in a test tube. After vortexing at 2000
rpm for 5 min, the tube was centrifuged at 6000 rpm for 5 min. After the octanol layer
was separated from the water layer, 10 puL aliquot of each layer was injected into a
Waters E2695 HPLC and the absorbance was measured. The LogP was defined as Log
[ratio between the amount of test compound in octanol and water solution]. The

procedure was repeated at least triplicate.
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7. Cell culture and cytotoxicity assay

3T3, 4T1 and HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Hyclone) supplemented with 1% penicillin and streptomycin and 10% FBS
(Hyclone). Methyl thiazolyl tetrazolium (MTT) assays were performed to assess the
cytotoxicity of HCYBATS on different cells. Tested cells were seeded into 96-well
plates with total volumes of 200 pL per well at a density of 10*and incubated at 37 °C
in 5% CO, for 24 h. After that, unfresh medium was abandoned, then various
concentrations of HCYBATSs were added (0, 5, 10, 20, 30, 40, 50, 100 uM). 24 h later,
each well was replaced with fresh medium containing 10 pL. of MTT solution (5
mg/mL) and incubated for another 4 h. The medium was continued to be incubated for
4 h. After that, the medium was carefully removed, and 120 uL. of DMSO was added
in each well to disperse the formazan. Finally, the absorbance at 490 nm was measured

by microplate reader (Bio-Tek, USA).

8. Monitoring BAT activation

In this work, BAT activation was induced in normal C57BL/6 mice by
norepinephrine (NE) administration or cold exposure. Firstly, NE (0.4 mg/kg) was
intravenously injected via tail vein 5 min before the intravenous injection of HCYBAT-
1 (5.4 pmol/kg). While same volume of saline was administrated instead of NE in the
normal group. Images were taken at different time points (2 min, 5 min, 10 min, 15
min, 20 min, 30 min, 40 min, 50 min and 60 min) after probe injection. To confirm the
in vivo imaging results, BAT and WAT were harvested at 10 minutes postinjection. /n
vivo and ex vivo imaging was performed under same imaging conditions as mentioned
above.

Monitoring BAT activation under cold exposure with HCYBAT-1: The
experimental group of C57BL/6 mice was placed in 4 °C environment for 12 h before
intravenous injection of HCYBAT-1. While normal group was placed at room

temperature (25 °C). Images were taken at different time points (2 min, 5 min, 10 min,
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15min, 20 min, 30 min, 40 min, 50 min and 60 min) after injection of the probe. To
confirm the in vivo imaging results, BAT and WAT were harvested at 10 minutes
postinjection. /n vivo and ex vivo imaging was performed under same imaging

conditions as mentioned above.
9. Biocompatibility assessment

The in vivo biocompatibility of HCYBAT-1 was evaluated by body weight
recording, blood biochemical examination and histopathology. HCYBAT-1 (5.4
umol/kg, n = 5) was injected intravenously in mice as experimental group, while same
amount of saline (n = 5) was used for the mice in control group. The weights were
recorded every day during 14 days. Then, serum was collected from mice of control, 1
day, 7 days and 14 days postinjection group, respectively, to analyze blood biochemical
indicators including alanine aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (ALP), total protein (TP), serum albumin (ALB), serum
creatinine (CREA), uric acid (UA) and blood urea (UREA).

Wild-type mice were injected with HCYBAT-1 (5.4 umol/kg) via tail vein and
were sacrificed at 1, 7, and 14 days postinjection, while control group received same
amount of saline via intravenous injection (n = 5 at each time point). Major organs
including liver, lungs, kidneys, spleen and heart were collected, fixed with 4%

paraformaldehyde, and stained with hematoxylin & eosin (H&E).

10. Table S1. Photophysical properties and lipophilicity of HCYBATS

/labs lex iem Stokes shift (D(%)

Probe eM'em™) LogP
(nm) (nm) (nm) (nm) (NS/DCM)

HCYBAT-1 6485 642 781 139 46970 0.5/15 2.234

HCYBAT-2 676.5 646 777 131 54460 0.4/7 3.354

HCYBAT-3 620.5 610 836 226 65440 0.8/2 1.351
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11. Supplemental figures
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Fig. S1 Normalized excitation and emission spectra of HCYBAT-1 (a), HCYBAT-2 (b) and

HCYBAT-3 (c) in DCM.
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Fig. S2 Polarity response measurements. Fluorescence spectra of HCYBAT-1 (a), HCYBAT-2 (b)

and HCYBAT-3 (¢) in solvents with different polarity (toluene (E(30) = 33.0), 1,4-dioxane

(Ex(30) = 36.0), THF (Ef(30) = 37.4), DCM (E1(30) = 40.7), acetone (E(30) = 42.2), DMF

(Ex(30) = 43.8), DMSO (E1(30) = 45.1), methanol (E+(30) = 55.4) and water (E1(30) = 62.8).

Linearity between maximum emission wavelength of HCYBAT-1 (d), HCYBAT-2 (e) and

HCYBAT-3 (f) and Er(30). Linearity between fluorescence intensity of HCYBAT-1 (g),

HCYBAT-2 (h) and HCYBAT-3 (i) and E1(30). 10 uM, /e = 597 nm.
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Fig. S3 Polarity response measurements. Fluorescence spectra of HCYBAT-1 (a), HCYBAT-2 (b)
and HCYBAT-3 (c) in mixtures of 1,4-dioxane and water, with 1,4-dioxane from 0 to 90%.
Linearity between maximum emission wavelength of HCYBAT-1 (d), HCYBAT-2 (e) and
HCYBAT-3 (f) and Af. Linear response between fluorescence intensity of HCYBAT-1 (g),

HCYBAT-2 (h) and HCYBAT-3 (i) and Af. 10 pM, Aex = 597 nm.
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Fig. S4 The photographs of HCYBATS dissolved in different media including H,O, normal saline
and FBS.
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Fig. S5 Fluorescence spectra of HCYBAT-1 (a), HCYBAT-2 (b) and HCYBAT-3 (c) in FBS at

different time points.
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Fig. S6 (a) Cytotoxicity of HCYBAT-1 to 4T1 and HepG2 cell lines. (b) Cytotoxicity of HCYBAT-

2 to 4T1 and HepG2 cell lines. (c) Cytotoxicity of HCYBAT-3 to 4T1 and HepG2 cell lines.
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Fig. S7 Colocalization experiment in HepG2 cells. The HepG2 cells were incubated with BODIPY
(100 nM) for 1 h and (a) HCYBAT-1 or (b) HCYBAT-3 (20 pM) for 30 min. (i) Fluorescence
image of probe in the red channel (Aex = 635 nm, Aep, = 700 nm). (ii) Microscopic image of BODIPY
in the green channel (4, = 475 nm, 4., = 510 nm). (iii)) Merged image of the green and the red

channels. (iv) Brightfield image. (v) Pearson’s correlation coefficient of probe and tracker. Scale

bar: 5 pm.
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Fig. S8 Evaluation of HCYBAT-1 for monitoring BAT activation in response to norepinephrine
(NE) treatment. (a) Fluorescence images of norepinephrine-treated (NE) and control mice (Normal)
(n = 3) at different time points (Aex = 710 nm, Aep, = 810 - 875 nm). (b) Fluorescent signals of NE

and Normal group at different time points (Aex = 710 nm, Ae, = 810-875 nm). Ex vivo fluorescence

images (c) and intensity analysis (d) of interscapular WAT (iWAT) and BAT at 10 min

postinjection.
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Fig. S9 Evaluation of HCYBAT-1 for monitoring BAT activation in response to cold exposure. (a)

Fluorescence images of cold exposure (4 °C) group and control group (25 °C) (n = 3) at different

time points (Aex = 710 nm, 4.y, = 810-875 nm). (b) Fluorescent signals of cold exposure (4 °C) and
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control mice (25 °C) (n = 3) at different time points (A = 710 nm, Aep, = 810-875 nm). Ex vivo
fluorescence images (c) and intensity analysis (d) of interscapular WAT (iWAT) and BAT at 10

min postinjection.
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Fig. S10 Biocompatibility of HCYBAT-1. (a) Weight recordings within 14 days postinjection of
saline solution (control) or HCYBAT-1 (5.4 umol/kg, n = 5). (b) Liver and kidney function
indicators were achieved at different time points after administration of saline solution (control) or
HCYBAT-1 (5.4 umol/kg, n =5). (c) H&E-staining analysis of organs including heart, liver, spleen,
lungs, and kidneys on 1 day, 7 days and 14 days after HCYBAT-1 injection (5.4 pumol/kg, n = 5),

scale bar =200 pm.
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Fig. S20 3C NMR of HCYBAT-1 (100 MHz, DMSO-d).
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Fig. S21 '"H NMR of HCYBAT-2 (400 MHz, DMSO-d).
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Fig. S23 '"H NMR of HCYBAT-3 (400 MHz, DMSO-d).
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HRMS spectra
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Fig. S25 HRMS spectrum of HCYBAT-1.
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Fig. S26 HRMS spectrum of HCYBAT-2.
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HPLC spectra
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Fig. S28 Analytical HPLC spectrum of HCYBAT-1.

HPLC parameters
MeOH (0.1% TFA) H,0 (0.1% TFA)

0 min 30% 70%
2 min 50% 50%
4 min 100% 0%
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Fig. S29 Analytical HPLC spectrum of HCYBAT-2.

HPLC parameters
MeOH (0.1% TFA) H,0 (0.1% TFA)

0 min 30% 70%
3 min 50% 50%
5 min 100% 0%
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Fig. S30 Analytical HPLC spectrum of HCYBAT-3.

HPLC parameters
MeOH (0.1% TFA) H,0 (0.1% TFA)

0 min 30% 70%
3 min 50% 50%
5 min 100% 0%
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