SUPPLEMENTARY MATERIAL

In-situ Dissolved Polypropylene Prediction by Raman and ATR-IR Spectroscopy for its Recycling

Sofiane Ferchichi^{a,b,c}, Nida Sheibat-Othman^{b*}, Olivier Boyron^c, Charles Bonnin^a, Sébastien Norsic^c, Maud Rey-Bayle^{a*}, Vincent Monteil^{c*}

^aIFP Energies Nouvelles, Rond-Point de l'échangeur de Solaize, 69360 Solaize, France

^bUniversite Claude Bernard Lyon 1, LAGEPP, UMR 5007 CNRS, 69622 Villeurbanne,

France

^cUniversite Claude Bernard Lyon 1, CP2M, UMR 5128, CNRS, 69616 Villeurbanne, France

Figure S1 Hansen solubility model of PP and the four selected solvents. The pink dot represents PP,
the pink grid represents the Hansen sphere, the blue dots represent good solvents which falls inside
the sphere and the red dots represent the bad solvents which falls outside the sphere
Figure S2 Flow diagram for the construction of the calibration set
Figure S3 PCA scores plot on the two first latent variables of the Raman calibration set in TCB (a)
before pre-processing and (b) after EPO pre-processing
Figure S4 PCA scores plot on the two first latent variables of the Raman calibration set in TCB (a)
before pre-processing and (b) after EPO pre-processing
Figure S5 PLS model loadings for: a) ATR-IR 1st latent variable, b) ATR-IR 2nd latent variable c) ATR-IR
3rd latent variable d) Raman 1st latent variable, e) Raman 2nd latent variable and f) Raman 3rd latent
variable of the TCB models
Figure S6 a) Residuals and b) Q Residuals reduced versus Hotelling T ² of polypropylene concentration
in TCB for ATR-IR model
Figure S7 a) Residuals and b) Q Residuals reduced versus Hotelling T ² of polypropylene concentration
in TCB for Raman model
Figure S8 Prediction of the dissolved polymer content dissolved in a) Xylene, b) Decalin, c) Decane
and d) TCB7

Table. S1 Values of Hansen solubility parameters of polypropylene and various solvents	8
Table. S2 Chemical properties of the selected solvent in this study	9

Figure S1 Hansen solubility model of PP and the four selected solvents. The pink dot represents PP, the pink grid represents the Hansen sphere, the blue dots represent good solvents which falls inside the sphere and the red dots represent the bad solvents which falls outside the sphere.

Figure S2 Flow diagram for the construction of the calibration set.

Figure S3 PCA scores plot on the two first latent variables of the Raman calibration set in TCB (a) before pre-processing and (b) after EPO pre-processing.

Figure S4 PCA scores plot on the two first latent variables of the Raman calibration set in TCB (a) before pre-processing and (b) after EPO pre-processing.

Figure S5 PLS model loadings for: a) ATR-IR 1st latent variable, b) ATR-IR 2nd latent variable c) ATR-IR 3rd latent variable d) Raman 1st latent variable, e) Raman 2nd latent variable and f) Raman 3rd latent variable of the TCB models.

Figure S6 a) Residuals and b) Q Residuals reduced versus Hotelling T^2 of polypropylene concentration in TCB for ATR-IR model.

Figure S7 a) Residuals and b) Q Residuals reduced versus Hotelling T^2 of polypropylene concentration in TCB for Raman model.

Figure S8 Prediction of the dissolved polymer content dissolved in a) Xylene, b) Decalin, c) Decane and d) TCB.

	δd	δρ	δh
Polypropylene	18	1	2.8
Solvent	δd	δρ	δh
toluene	18	1.4	2
trichloroethylene	18	3.1	5.3
chlorobenzene	19	4.3	2
chloroform	17.8	3.1	5.7
cyclohexane	16.8	0	0.2
benzene	18.4	0	2
o-dichlorobenzene	19.2	6.3	3.3
butyl acetate	15.8	3.7	6.3
hexane	14.9	0	0
ethyl acetate	15.8	5.3	7.2
diethyl ether	14.5	2.9	5.1
1,4-dioxane	19	1.8	7.4
tetrahydrofuran	16.8	5.7	8
nitrobenzene	20	8.6	4.1
xylene	17.8	1	3.1
cyclohexanone	17.8	8.4	5.1
amyl acetate	15.8	3.3	6.1
isopropyl benzene (cumene)	18.1	1.2	1.2
Tetrahydronaphthalene (Tetralin)	19.6	2	2.9
Decahydronaphthalene (Decalin)	17.6	0	0
Decane	16	0	0
Methyl Cyclopentane	16	0	1
n-Butyl Acetate	15.8	3.7	6.3
isophorone	16.6	8.2	7.4
diethyl maleate	16.1	7.7	8.3
butoxy ethoxy propanol	15.5	6.5	10.2
trichlorobenzene	20.2	4.2	3.2
tetrachloroethylene	18.3	5.7	0
nitroethane	16	15.5	4.5
ethanolamine	17	15.5	21.2
acetone	15.5	10.4	7
methanol	15.1	12.3	22.3
2-nitropropane	16.2	12.1	4.1
dipropylene glycol	16.6	12	20.7
ethanol	15.8	8.8	19.4

Table. S1 Values of Hansen solubility parameters of polypropylene and various solvents

Solvent	Purity	Molar mass	Density	Viscosity @20 °C	Molar volume
	(%)	(g mol ⁻¹)	(g cm ⁻³)	(mPa.s)	(cm ³ mol ⁻¹)
Xylene	99	106.17	0.87	0.591	122.3
Decahydronaphthalene (decalin)	98	138.25	0.88	1.788	154.8
n-Decane	99	142.29	0.74	0.850	196.0

181.46

1.45

0.306

123.6

Table. S2 Chemical properties of the selected solvent in this study

99

1,2,4-Trichlorobenzene