Metal-phenolic coordination frameworks nanozyme exhibits dual enzyme mimic activity and its application of effective colorimetric detection of biomolecules

Aham Emmanuel Chigozie^{1, 4#}, A. Ravikumar^{1#}, Xiaofeng Yang¹, G. Tamilselvan¹, Yibin Deng^{2,3*}, A. Arunjegan¹, Xuesong Li¹, Zhang Hu¹, Zhen Zhang^{1,2,3*}

¹School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.

² Center for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.

³ Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China.

⁴Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.

*Corresponding author:

Email: Email: dengyb75@163.com; zhangzhen@ujs.edu.cn

[#] These authors equally contributed this work.

Figure S1 High-resolution XPS spectra of nanozymes showing Cu 2p, Co 2p, Fe 2p, O 1s and C 1s core energy levels.

Figure S2 FT-IR spectra of Cu-TA, Co-TA, Fe-TA and Pristine-TA.

Figure S3 The effect of (a) pH and (b) temperature of the peroxidase and catalase activity of Fe-TA nanozyme.

Figure S4 The Michaelis-Menten curves for different peroxidase-like nanozymes using $\rm H_2O_2$ and TMB as substrates

Figure S5 The Michaelis-Menten curves and double reciprocal plots for various catalase-like activities of nanozymes.

Figure S6 The remarkable stability of Fe-TA nanozyme after 21 days of storage.

Figure S7 Selectivity performance of Fe-TA nanozyme in detecting Cys, Hcy and GSH in the presence of other possible interfering biomolecules.

Enzyme mimic	MPNs	Substrate	K _m (mM)	V _{max} (Ms ⁻ 1)
POD	Cu-TA	H_2O_2	0.261	2.04
		TMB	0.306	1.126
	Co-TA	H_2O_2	0.497	2.39
		TMB	0.248	1.251
	Fe-TA	H_2O_2	0.11	4.76
		TMB	0.348	1.651
	Cu-TA	H_2O_2	10.64	0.89
CAT	Co-TA	H_2O_2	18.88	3.96
	Fe-TA	H_2O_2	18.19	7.07

Table S1 Comparison of the POD-like and CAT-like kinetic parameters of Cu-TA, Co-TA andFe-TA nanozymes.

	Materials	Method	Linear	LODs	Reference
			ranges	(µM)	S
			(µM)		
Cys	CeO ₂ /CoO	Colorimetry	5-10	3.71	1
	CuMnO ₂	Colorimetry	20-300	11.26	2
	Pd–Fe ₃ O ₄ DBNPs	Colorimetry	0-250	3.1	3
	Pt@WO ₃ NSs	Colorimetry	0.01–15	1.2	4
	PdPt ₃ -LNT NDs	Colorimetry	0–200	3.099	5
	Fe-TA	Colorimetry	1-2	0.382	This study
Нсу	AgNPRs	Colorimetry	0-5	0.041	6
	CB-CQDs	Colorimetry	0.5–20	0.6	7
	MnO ₂ NFs-RhB	Colorimetry	0–30	0.087	8
	Fe ³⁺ - TMB	Colorimetry	2–24	2.09	9
	Fe ₃ O ₄ @CuO-GO	Colorimetry	5-200	1.8	10
	Fe-TA	Colorimetry	2-3	0.776	This study
GSH	Hemin/GQD	Colorimetry	1-50	200	11
	Pd150-PCRP NPs	Colorimetry	2-300	1.65	12
	Fe ₃ O ₄ /CNDs	Colorimetry	0–20	0.058	13
	PCN-224-Mn	Colorimetry	0.5-60	0.233	14
	Mn ₃ O ₄ microspheres	Colorimetry	5-60	0.889	15
	Fe-TA	Colorimetry	2-9	0.750	This study

Table S2 Comparison of the linear ranges and LOD of Cys, GSH, and Hcy with previous studies.

Targets	Samples	Spiked (µM)	Found (µM)	Recovery±RSD (%)
	Tap water	5	5.12	102.4±2.24
Cys	River water	10	10.13	101.3±3.84
	Lake water	15	14.9	99.3±4.02
	Tap water	5	4.97	99.4±1.27
Нсу	River water	10	9.9	99±5.12
	Lake water	15	14.95	99.7±6.1
	Tap water	5	5.02	100.4±1.98
GSH	River water	10	9.93	99.3±3.14
	Lake water	15	15.2	101±3.55

Table S3 The performance of Fe-TA colorimetric sensor in spiked real water samples. (n=3)

REFERENCES

- 1 J. Lian, P. Liu, C. Jin, Q. Y. Liu, X. Zhang and X. Zhang, *ACS Sustainable Chemistry and Engineering*, 2020, **8**, 17540–17550.
- Y. Chen, T. Chen, X. Wu and G. Yang, Sensors and Actuators B: Chemical, 2019, 279, 374–384.
- 3 W. Duan, Z. Qiu, S. Cao, Q. Guo, J. Huang, J. Xing, X. Lu and J. Zeng, *Biosensors and Bioelectronics*, 2022, **196**, 113724.
- 4 A. Alaei, M. Hosseini, F. Nemati and H. Karimi-Maleh, *Environmental Research*, 2022, **212**, 113246.
- 5 Z. Ma, L. Dong, B. Zhang, B. Liang, L. Wang, G. Ma and L. Wang, *International journal of biological macromolecules*, 2022, **216**, 779–788.
- 6 P. Li, S. M. Lee, H. Y. Kim, S. Kim, S. Park, K. S. Park and H. G. Park, *Scientific Reports 2021 11:1*, 2021, **11**, 1–8.

- 7 C. Yuan, X. Qin, Y. Xu, X. Li, Y. Chen, R. Shi and Y. Wang, *Journal of Photochemistry and Photobiology A: Chemistry*, 2020, **396**, 112529.
- 8 H. Xue, M. Yu, K. He, Y. Liu, Y. Cao, Y. Shui, J. Li, M. Farooq and L. Wang, *Analytica Chimica Acta*, 2020, **1127**, 39–48.
- M. Lin, Y. Guo, Z. Liang, X. Zhao, J. Chen and Y. Wang, *Microchemical Journal*, 2019, 147, 319–323.
- 10 Z. Song, C. Jiang, F. Wang, L. Yu, S. Ye, P. Dramou and H. He, *Microchimica Acta*, 2021, **188**, 1–10.
- Z. Li, X. Deng, X. Hong and S. Zhao, *Molecules 2022, Vol. 27, Page 6779*, 2022, 27, 6779.
- 12 S. Li, Y. Zhao, F. Ji, R. Zheng, X. Ji, Z. Liu and L. Wang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2022, **650**, 129617.
- 13 N. Luo, Z. Yang, F. Tang, D. Wang, M. Feng, X. Liao and X. Yang, ACS Applied Nano Materials, 2019, 2, 3951–3959.
- 14 X. Lai, Y. Shen, S. Gao, Y. Chen, Y. Cui, D. Ning, X. Ji, Z. Liu and L. Wang, Biosensors and Bioelectronics, 2022, 213, 114446.
- 15 J. Xi, C. Zhu, Y. Wang, Q. Zhang and L. Fan, *RSC Advances*, 2019, 9, 16509–16514.