Supporting Information

A One-Pot CRISPR-RCA Strategy for Ultrasensitive and Specific Detection of circRNA

Xinxin Ke^a, Ajuan Liang^d, Chuanxia Chen^{c*}, Tao Hu^{a,b*}

^aThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China.

^bSchool of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China.

^cSchool of Materials Science and Engineering University of Jinan, Jinan 250022, China.

^dDepartment of Obstetrics, Shanghai First Maternity and Infant Hospital, Obstetrics and Gynecology Hospital, School of Medicine, Tongji University, Shanghai 201204, China.

*Corresponding authors: <u>hutaozd@zju.edu.cn;</u> mse_chencx@ujn.edu.cn

This document includes: Figures S1 to S5 Tables S1 to S2

Supplementary figures

Figure S1. (A) Schematic diagram illustrating the synthesis of circRNA1445 through the use of linear RNA with the assistance of linear RNA and T4 RNA ligase 2. (B) Native PAGE analysis of the synthesized circRNA after RNase R digestion.

Figure S2. Denaturing PAGE was employed for the separation and purification of the obtained circRNA. Lane M: DNA marker; Lane 1: linear RNA; Lane 2: post-ligation; Lane 3: tsRNA.

Figure S3. Real-time fluorescence monitoring assay demonstrating the feasibility of the two-step assay. The gray arrow indicates the time of two-step process.

Figure S4. Fluorescence intensity as a function of primer length of the RT-RCA.

Figure S5. (A) The real-time reverse transcription PCR for circRNA1445 and GAPDH in LO2 cell. (B) The real-time reverse transcription PCR for circRNA1445 and GAPDH in HepG2 cell. GAPDH was employed as the universal endogenous control.

Supplementary tables

Name	Sequence (5'-3')	Purpose	
P-linear RNA	P- UUGGGAAAGAUGAAAUGCUUAAAAACAAAAGGGAGG CUUGUGGAUCAGAAUCUGAACAAAA	For cicrRNA formation	
Ligation primer	AAGCATTTCATCTTTCCCAATTTTGTTCAGATTCTGAT	For cicrRNA	
Ligation primer	CC	formation	
Linear RNA	GGAGGCUUGUGGAUCAGAAUCUGAACAAAUUGGG	For specificity	
	AAAGAUGAAAUGCUUAAAAACAAAAG		
TaDNA	GGAGGCUUGUGGAUCAGAAUCUGAACAAAUUGGG		
	AAAGAUGAAAUGCUUAAAACAAAAGGGAGGCUUGU	For specificity	
151(17)	GGAUCAGAAUCUGAACAAAAUUGGGAAAGAUGAAA	For specificity	
	UGCUUAAAACAAAAG		
RT primer-12nt	AAGCATTTCATC	RT-RCA	
RT primer-15nt	AAGCATTTCATCTTT	RT-RCA	
RT primer-18nt	AAGCATTTCATCTTTCCC	RT-RCA	
RT primer-20nt	AAGCATTTCATCTTTCCCAA	RT-RCA	
RT primer-22nt	AAGCATTTCATCTTTCCCAATT	RT-RCA	
RT primer-25nt	AAGCATTTCATCTTTCCCAATTTTG	RT-RCA	
crRNA-1	UAAUUUCUACUAAGUGUAGAU <u>AAAAAAAAAGGGAG</u>		
	GCUUGUG	Target recognition	
crRNA-2	UAAUUUCUACUAAGUGUAGAU <u>GAUCAGAAUCUGAA</u>	Target recognition	
		Target recognition	
CIKINA-3			
mDNA 4			
CIKINA-4		Target recognition	
crKNA-5	AAAUUUCUACUAAGUGUAGAU <u>AAGAUGAAAUGCGG</u> <u>AAAACAA</u>	Target recognition	
crRNA-8nt	UAAUUUCUACUAAGUGUAGAU <u>AAAGGGAG</u>	Target recognition	
crRNA-10mt	UAAUUUCUACUAAGUGUAGAU <u>AAAAGGGAGG</u>	Target recognition	
crRNA-16nt	UAAUUUCUACUAAGUGUAGAU <u>AAAAAAAGGGAGG</u> <u>CG</u>	Target recognition	
crRNA-21nt	UAAUUUCUACUAAGUGUAGAU <u>AAAAAAAAAGGGAG</u>	Target recognition	
	GCUUGUG		
crRNA-24nt	UAAUUUCUACUAAGUGUAGAU <u>TTAAAACAAAAGGG</u>	Target recognition	
	AGGCGGGATC		
crRNA-26nt	UAAUUUCUACUAAGUGUAGAUCTTAAAAACAAAAGG	Target recognition	
	GAGGCGGGATCA		
Target ssDNA without	AAGCATTTCATCTTTCCCAATTTTGTTCAGATTCTGAT	Cas12 reaction	

PAM	C <u>CACAAGCCTCCCTTTTGTTTT</u>	analysis
Target ssDNA with	AAGCATTTCATCTTTCCCAATTTTGTTCAGATTCTGAT	Cas12 reaction
PAM	PAM C <u>CACAAGCCTCCCTTTTGTTTT</u> GAAACATT	
Target dsDNA without	AAAACAAAAGGGAGGCTTGTGGATCAGAATCTGAAC	Cas12 reaction
PAM-F	AAAATTGGGAAAGATGAAATGCTT	analysis
Target dsDNA with	AATGTTTCAAAACAAAAGGGAGGCTTGTGGATCAGA	Cas12 reaction
PAM-F	PAM-F ATCTGAACAAAATTGGGAAAGATGAAATGCTT	
Non-target ssDNA	TGGCATTTGGCCTGGTGTGTGCAACATGTGAGCAGAT	Cas12 reaction
without PAM	TGC	analysis
Non-target ssDNA with	TGGCATTTGGCCTGGTGTGTGCAACATGTGAGCAGAT	Cas12 reaction
PAM	TGCGAAACATT	analysis
Non-target dsDNA with	AATGTTTCGCAATCTGCTCACATGTTGCACACACCAG	Cas12 reaction
PAM-F	GCCAAATGCCA	analysis
C1445-1QF		QPCR for
	CITOTOGATCAGAATCIGAACA	comparison
01445 100		QPCR for
C1445-1QK	Сегесстионнаявся	comparison
	AGAAGGCTGGGGCTCATTTG	For cell QPCR
GAPDH-QF	Adaadderddddocrearrig	analysis
GAPDH-QR	CCACCACCCATTCCTCATCAT	For cell QPCR
	GCAGGAGGCATIGCTGATGAT	analysis
C1445-QF		For cell QPCR
	IGOCGAAAGIICACIIAGAA	analysis
C1445-QR		For cell QPCR
	CACATOTOTIOCICCATOTO	analysis
C1445-PF	ACTTCGAAGGAGAAGACTATAGAG	For PCR
C1445-PR CACTTGACTCTGTATCCATTGT		For PCR

No.	Signal readout	LOD	Time(min)	On-site diagnosis	References
1	Fluorescence	1 fM	-	No	(1)
2	Fluorescence	1.1 fM	140	Yes	(2)
3	Fluorescence	0.1 pM	180	Yes	(3)
4	Fluorescence	1 fM	30	Yes	(4)
5	Electrochemical	3.5 fM	90	No	(5)
6	Electrochemical	80 aM	10	No	(6)
7	Fluorescence	100 pM	50	Yes	(7)
8	Fluorescence	300 aM	30-120	Yes	This work

Table S2. Comparison biosensors for circRNA detection between our work and other methods.

Supplementary references

References

(1) Zhang, P.; Guo, N.; Gao, K.; Su, F.; Wang, F.; Li, Z.Direct recognition and sensitive detection of circular RNA with ligation-based PCR. *Org Biomol Chem.* **2020**, 18(17):3269-3273.

(2) Liu, Y.; Zhang, X.; Liu, M.; Xu, F.; Zhang, Q.; Zhang, Y.; Weng, X.; Liu, S.; Du, Y.,; Zhou, X. Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification. *Anal Chim Acta*. **2020**, 1101:169-175.

(3) Dong, J.; Zeng, Z.; Sun, R.; Zhang, X.; Cheng, Z.; Chen, C.; Zhu, Q. Specific and sensitive detection of CircRNA based on netlike hybridization chain reaction. *Biosens Bioelectron*. **2021**, 192:113508.

(4) Song, P.; Zhang, P.; Qin, K.; Su, F.; Gao, K.; Liu, X.; Li, Z. CRISPR/Cas13a induced exponential amplification for highly sensitive and specific detection of circular RNA. *Talanta*. **2022**, 246:123521.

(5) Jiao, J.; Li, C.; Ning, L.; Shi, L.; Wang, L.; Xiang, Y.; Li, G. Electrochemical detection of circRNAs based on the combination of backsplice junction and duplex-specific nuclease. *SENSOR ACTUAT B-CHEM.* **2020**, 302, 127166.

(6) Cheng, L.; Yang, F.; Zhao, Y.; Liu, Z.; Yao, X.; Zhang, J. Tetrahedron supported CRISPR/Cas13a cleavage for electrochemical detection of circular RNA in bladder cancer. *Biosens Bioelectron.* **2023**, 222:114982.

(7) Zhao, G.; Yan, X.; Zhang, Y.; Deng, J.; Liang, X. Sensitive detection of MiRNA and CircRNA through DSN enzyme cooperating NEase assisted dual signal amplification. *Anal Biochem.* **2022**, 654:114744.