Supporting Information

L-Cysteine Functionalized Magnetite Nanoparticles Adorned Ti$_3$C$_2$-MXene Nanohybrid based Screen Printed Immunosensor for Oral Cancer Biomarker Detection

Manali Choramle$^{1#}$, Damini Verma$^{2#}$, Ashish Kalkal3,4*, Rangadhar Pradhan5, Avdhesh Kumar Rai6, Gopinath Packirisamy1,2*

1Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
2Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
3Nanostructured system Laboratory, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
4Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W7TS, UK
5iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India-247667
6DBT Centre for Molecular Biology and Cancer Research, Dr Bhubaneswar Borooah Cancer Institute (Tata Memorial Centre), Gopinath Nagar, A K Azad Road, Guwahati-781016

Authors have contributed Equally

*Corresponding author: Ashish Kalkal, Gopinath Packirisamy

Email ID: a.kalkal@ucl.ac.uk, gopi@bt.iitr.ac.in
S1 Chemicals and Reagents
1-(3-(dimethylamino) propyl)-3-ethylcarbodiimide hydrochloride (EDC), Hexaammineruthenium (III) Chloride \([\text{Ru} (\text{NH}_3)_6]^{3+}\) and N-hydroxysuccinimide (NHS) were sourced from Sigma Aldrich. CYFRA 21-1 biomarker and Anti-CYFRA 21-1 were procured from Ray Biotech. Sodium diphosphate anhydrous \([\text{Na}_2\text{HPO}_4]\) and Sodium monophosphate \([\text{NaH}_2\text{PO}_4]\) were bought from Fisher Scientific. NaCl and NaOH pellets were sourced from Himedia, India. Commercial gold-based screen-printed electrodes (GSPE) of 250AT series were procured from Metrohm DropSens. Ferric chloride and ferrous chloride were procured from Loba Chemie Pvt Ltd. \(\text{Ti}_3\text{C}_2 \text{MXene}\) was purchased from Nanochemazone. L-Cyst was purchased from Sisco Research Laboratories, India. All the chemicals utilized were of analytical grade and used without the necessity for additional purification steps. Sodium diphosphate dihydrate and sodium monophosphate were mixed to prepare a phosphate buffer solution (0.2 M PBS) for performing electrochemical studies. All solutions were made using distilled water (DI) with a resistivity of 18.2 MΩ cm and stored at 4 °C.

S2 Instrumentation
X-ray diffraction (XRD, Bruker D-8 Advance) was employed to analyze the phase and crystallinity of the synthesized L-Cyst@MNP, \(\text{Ti}_3\text{C}_2 \text{MXene}\), and L-Cyst@MNP/Ti3C2 MXene nanohybrid. A monochromatic X-ray beam with Cu-Kα radiation (\(\lambda = 1.5406 \text{ Å}\)) was utilized for spectrum recording. Morphological and structural properties of nanohybrid and fabricated electrodes were examined through scanning electron microscopy (SEM) [Zeiss Ultra Plus, Carl Zeiss, Germany] and high-resolution transmission electron microscopy (HRTEM) [JEOL JEM-2200 FS (Japan) instrument]. UV-Visible spectrophotometer (Lasany LI-2800) was employed to study the absorption properties of the L-Cyst@MNP, \(\text{Ti}_3\text{C}_2 \text{MXene}\), and L-Cyst@MNP/Ti3C2 MXene nanohybrid. Fourier transform infrared (FTIR) spectroscopy (Agilent Cary 630) was utilized to analyze the functionalization of MNPs with L-Cyst and
amide bond formation after antibodies immobilization onto L-Cyst@MNPs/Ti$_3$C$_2$ MXene/GSPE electrode. The differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were performed using an Autolab Potentiostat/Galvanostat (Electrochemical analyzer, Metrohm, The Netherlands). For these studies, GSPE having working electrode of gold (4 mm diameter), counter of platinum, and reference of silver were utilized. Freshly prepared 0.2 M PBS solution (pH 7.0) containing $[\text{Ru} (\text{NH}_3)_6]^{3+}$ (5 mM) as a redox coupler was used as an electron mediator, while for EIS studies 5 mM $[\text{Fe(CN)}_6]^{3-/4-}$ redox probe was utilized.

S3 Stock and Volume Optimization

To achieve a smooth and uniform coating on the GSPE, selecting the appropriate stock concentration of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene is essential. For this study, we prepared various stock concentrations of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene, including 1, 3, and 5 mg mL$^{-1}$ in DI. It was noted that the maximum magnitude of DPV peak current was observed at 5 mg mL$^{-1}$ concentration, as illustrated in **Fig.S1 (a)** by utilizing PBS buffer (0.2 M, pH 7.0) consisting of $[\text{Ru} (\text{NH}_3)_6]^{3+}$ as redox species. The observed phenomenon could potentially be attributed to enhanced electron transfer between the electrolyte solution containing $[\text{Ru} (\text{NH}_3)_6]^{3+}$ and the interface of electrode surface area due to structural realignment of the L-Cyst@MNPs/Ti$_3$C$_2$-Mxene at 5 mg mL$^{-1}$. However, at lower concentrations (1 and 3 mg mL$^{-1}$), it is possible that the proper orientation of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene did not occur, resulting in a decrement of DPV peak current values. Moreover, too high concentration has led to aggregation, hinder dispersion, or cause instability, thereby decreasing current. Hence, 5 mg mL$^{-1}$ stock concentration of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene nanohybrid was utilized to fabricate the L-Cyst@MNPs/Ti$_3$C$_2$-Mxene/GSPE electrode using drop cast method. **Fig.S1 (b)** illustrates its dot graph.
Similarly, the next step involved was selecting the appropriate volume. The volume of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene (3 μL, 5 μL, and 7 μL) was carefully drop-casted onto the GSPE working area. Fig. S1 (c) depicts the DPV peak current observed for each volume. The highest DPV peak current is achieved with 7 μL that resulted in rapid binding kinetics 1. However, on further increasing volume above this, attributed to the thicker barrier layers formed at higher coating volumes, which subsequently limit the flow of electrons between the electrode surface and redox species. Also, at higher volume, overflowing of liquid to counter and reference electrode might interfere with electrochemical response. Thus, at a volume of 7 μL, the most favourable conditions were achieved, facilitating a faster flow of electrons. Consequently, a solution of 5 mg mL$^{-1}$ of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene nanohybrid with a volume of 7 μL was selected for the modification of GSPE for subsequent electrochemical studies. Additionally, the dot graph is depicted in Fig. S1 (d).
Fig. S1: (a) Stock concentration optimization of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene nanohybrid, (b) Dot graph of stock concentration optimization, and (c) Volume optimization of L-Cyst@MNPs/Ti$_3$C$_2$-Mxene nanohybrid, (d) Dot graph of volume optimization

S4 Electrode Studies

EIS was further performed to observe the modification of various electrodes in PBS (0.2 M) comprising [Fe(CN)$_6$]$^{3−/4−}$ at 0 V from 100 kHz to 10 Hz frequency window. The variation in charge transfer resistance i.e., Rct value is depicted by Nyquist plot semicircle [Fig. S2] for various modified electrodes while the inset of Fig.S2 showed equivalent circuit. The different parameters of Nyquist plot of bare GSPE (Fig.S2, i), Ti$_3$C$_2$-MXene/GSPE (Fig.S2, ii), L-Cyst@MNPs/GSPE (Fig.S2, iii), L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (Fig.S2, iv), anti-CYFRA-21-1/L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (Fig.S2, v), and BSA/anti-CYFRA-21-1/L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (Fig.S2, vi) respectively, are illustrated in Table S1.

Fig.S2: EIS spectra of various electrodes namely (i) Bare GSPE (ii) Ti$_3$C$_2$-MXene/SPE (iii) L-Cyst@MNPs/GSPE (iv) L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (v) anti-CYFRA-21-1/L-
Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (vi) BSA/anti-CYFRA-21-1/L-Cyst@MNPs/Ti$_3$C$_2$

MXene/GSPE immunosensor

Table S1: Impedimetric characteristic of different modified electrodes

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>Charge transfer resistance R_{ct} (KΩ)</th>
<th>Double-layer capacitance C_{dl} (µF)</th>
<th>Ohmic resistance R_s (Ω)</th>
<th>Warburg impedance W_z [µMho*s$(1/2)$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSPE</td>
<td>6.44</td>
<td>2.62</td>
<td>24.7</td>
<td>155</td>
</tr>
<tr>
<td>Ti$_3$C$_2$-MXene/GSPE</td>
<td>6.1</td>
<td>3.35</td>
<td>22.1</td>
<td>190</td>
</tr>
<tr>
<td>L-Cyst@MNPsGSPE</td>
<td>2.66</td>
<td>3.85</td>
<td>23.1</td>
<td>157</td>
</tr>
<tr>
<td>L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE</td>
<td>3.61×10^{-3}</td>
<td>2.92</td>
<td>22.4</td>
<td>70</td>
</tr>
<tr>
<td>anti-CYFRA-21-1/L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE</td>
<td>5.77</td>
<td>4.15</td>
<td>23.2</td>
<td>160</td>
</tr>
<tr>
<td>BSA/anti-CYFRA-21-1/L-Cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE</td>
<td>2.13</td>
<td>5.31</td>
<td>24.2</td>
<td>179</td>
</tr>
</tbody>
</table>

S5 Scan Rate Studies

![Scan Rate Studies Figure](image)
Fig. S3: (a) Scan Rate study of BSA/anti-CYFRA-21-1/L-cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE (b) It shows the cathodic (I_{pc}) and anodic (I_{pa}) peak currents against √scan rate plot. (c) It shows the plot of differential peak potential (ΔE_p) and √scan rate.

Table S2: Enlist the calculated electrochemical attributes of the immunosensor.

<table>
<thead>
<tr>
<th>Electrode/Material Used</th>
<th>A_s (cm2)</th>
<th>D (cm2 s$^{-1}$)</th>
<th>ΔE_p (V)</th>
<th>K_s (s$^{-1}$)</th>
<th>I^* (mol cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA/anti-CYFRA-21-1/L-cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE</td>
<td>0.125</td>
<td>5.47 × 10$^{-12}$</td>
<td>0.097</td>
<td>0.187</td>
<td>1.50 × 10$^{-8}$</td>
</tr>
</tbody>
</table>

S6 Electrochemical Response Studies

\[
Sensitivity = \frac{slope}{area \text{ of immunosensor} \ (0.125 \text{ cm}^2)}
\]

Eq. (S1)

\[
\text{Limit of Quantification} = \frac{10\sigma}{sensitivity}
\]

Eq. (S2)

\[
\text{Limit of Detection} = \frac{3\sigma}{sensitivity}
\]

Eq. (S3)

where σ is the standard deviation (SD) of the immunosensor’s intercept.

S7 Interferents, Reproducibility and Stability Studies
Fig. S4: Stability of immunoelectrode

S8 Artificial Saliva Analysis
Fig. S5: Comparative evaluation of current response with %RSD and %recoveries using the developed BSA/anti-CYFRA-21-1/L-cyst@MNPs/Ti$_3$C$_2$-MXene/GSPE immunosensor between spiked sensing and standard sensing current values

References
