Supporting Information

Unlocking the Access to Natural Identical Vanillin *via* Isoeugenol Ozonation: *in-situ* ATR-IR Monitoring and Safety Evaluation

Yun Zhao^{a,b*}, Tingfei Li^a, SiSi Xie^a, Pingyi Zhang^a, Haifang Mao^{a,b*}

^aShanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.

^bShanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232

Corresponding author's email: zhaoyun@sit.edu.cn (Yun Zhao); mhf@sit.edu.cn (Haifang Mao)

1 Experimental Sections

ESI 1: HPLC analysis for isoeugenol and vanillin

All the experimental conditions for HPLC tests were the same during the whole work.

Chromatographic column: C18 column (4.6 mm×250 mm, 5 µm)

Column temperature: 298.15 K

Detection wavelength: 232 nm

Injection volume:10 µL

Flow rate: 1.0 mL/min

Mobile phase:

A – acetonitrile (HPLC);

B – distilled water (containing 0.1% phosphoric acid);

Gradient elution method was adopted (see the table below):

HPLC mobile phase gradient

Time /min	A%	B%
0	30	70
8	50	50
13	90	10
14	30	70
20	30	70

External standard curve method was used for isoeugenol and vanillin quantification.

Establishment of isoeugenol standard curve. Used mobile phase ($V_{acetonitrile}$: $V_{water} = 30\%$:70%) to prepare a series of isoeugenol standard solutions with concentrations of 0.04106 mg/mL, 0.1232 mg/mL, 0.2053 mg/mL, 0.2874 mg/mL and 0.4106 mg/mL. The standard solutions were analyzed with the above HPLC analysis method. The retention time for isoeugenol was 13.142 min. Isoeugenol standard curve was obtained by plotting a curve of $A \sim c$, and the coefficient of determination R² was 0.9997 (Figure S1a). **Establishment of vanillin standard curve**. The standard curve for vanillin was obtained in a similar way. The concentrations for vanillin standard solutions were 0.04210 mg/mL, 0.08416 mg/mL, 0.1262 mg/mL, 0.1683 mg/mL and 0.2104 mg/mL. The retention time for vanillin was 6.096 min. The coefficient of determination R² for vanillin standard curve was 0.9995 (Figure S1b).

ESI 2: Establishment of the mid-infrared quantification model for isoeugenol and vanillin to guide the optimization of experimental conditions

The characteristic absorption peaks for vanillin and isoeugenol were identified by measuring the infrared spectra of the pure standards with solvent system (methanol-H₂O) as the reference. As shown in **Figure S2** and **Table S1**, due to the close structure, the infrared spectra for isoeugenol and vanillin was quite similar. However, it was still possible to select the unperturbed 1674 cm⁻¹ as the characteristic peak for vanillin (corresponding to the stretching vibration of C=O bond of vanillin aldehyde group) and 966 cm⁻¹ as the characteristic peak for isoeugenol (corresponding to the stretching vibration of C=O bond of vanillin of C=C double bond (*trans-*) of isoeugenol side chain). The interference of bending mode vibration of water, which absorbed at 1634 cm⁻¹ could be well eliminated in the present work.

A series of standard solutions of vanillin and isoeugenol with different concentrations were prepared (calibration set), in which the concentration range of isoeugenol was 0-230 mg/mL and that of vanillin was 0-200 mg/mL. Collected the infrared absorption spectra for each standard solution and their contents were accurately quantified by the HPLC method described in **ESI 1**. Linked the the IR absorbance at the characteristic peak of isoeugenol and vanillin with their concentration (converted to mass percentage concentration) and established the *in-situ* mid-infrared quantification model with the help of ICQuant Model (Mettler software) by a univariate linear regression model. Typically, the abscissa was the actual value measured by HPLC, and the ordinate was the predicted value by IR quantification model. An independent test set (validation set) was used to verify each model's predictive accuracy. The determination coefficient of isoeugenol and vanillin infrared model was 0.9922 and 0.9957, respectively, indicating that the infrared quantitative model could predict isoeugenol and vanillin concentration precisely, which was suitable for the *in-situ* quantification during isoeugenol ozonation process (Figure S3).

ESI 3: Procedure for Safety evaluation

In a typical experiment, 20 g isoeugenol, 170 mL methanol and 30 mL water were added in sequence into the 1000 mL glass reaction kettle of RC1e. The temperature sensor and calibration heater were inserted below the liquid level. The stirring speed was set to 300 rpm and the reaction temperature was set to 263.15 K (\pm 0.3 K). After the temperature was stable, continued to stirring for another 10 min. The specific heat capacity C_{p1} (J/g•K) and the comprehensive heat transfer coefficients U₁ and U₂ (W/K•m²) of the system were measured before the reaction began. The system was maintained at 263.15 K for 90 min in an ozone atmosphere. Used the established *in-situ* ATR-IR system to monitor the reaction and stopped the reaction when the characteristic absorption peak for isoeugenol disappeared. The specific heat capacity C_{p2} (J/g•K) and the comprehensive heat transfer coefficients U₃ and U₄ (W/K•m²) of the system were measured at the end of reaction. Finally, the reaction kettle was heated to the room temperature, the product was released from the bottom of the reaction kettle and the accessories and reaction kettle were thoroughly cleaned.

ESI 4: Procedure for solubility study of vanillin in methanol-water system

Since isoeugenol was a liquid and could be completely dissolve in methanol-water solvent, the saturated solubility of vanillin was investigated in mixed solvents of methanol and water with different volume ratios. The solubility tests were conducted at 258.15 K with the following procedures.

Firstly, opened the constant temperature circulating water bath and set it to the predetermined temperature of 258.15 K. Weighed 30 g of vanillin and grounded them into powder, then added 100 g of mixed solvent and sealed the reactor with rubber plug. Ultrasound the solution for 30 min to speed up the dissolution. Connected the constant temperature circulating water bath, opened the circulating water, turned on the magnetic stirring and started timing. Holding the solution for 12 h at constant temperature, then turned off the magnetic stirring, and kept warm for 1-2 h. The supernatant was taken and the vanillin content was measured by HPLC.

The molar fraction solubility of vanillin in a methanol-water solvent can be described using equation 1¹.

$$x_1 = \frac{m_1/M_1}{m_1/M_1 + m_2/M_2 + m_3/M_3}$$
 (equation S-1)

Where, m_1 , m_2 and m_3 represent the mass of vanillin, methanol and water respectively. M_1 , M_2 and M_3 represent the molar mass of vanillin, methanol and water, respectively.

Noticed that the syringes and HPLC needle filters needed to be preheated at 283.15 K higher than the solubility test temperature (258.15 K) to prevent vanillin from crystallizing during sampling. Experimental results were shown in **Table S3**.

Using the data in Table S3 to determine the appropriate concentration for isoeugenol during the whole experiment.

In the methanol-water system, the higher the water content, the lower the vanillin solubility. Therefore, the molar fraction solubility of vanillin in methanol-water (75%:25%, volume ratio) was used to determine the upper limit concentration of vanillin and isoeugenol. Fixed the total solvent volume at 150 mL, where the water volume V_2 was 37.5 mL and methanol volume V_3 was 112.5 mL.

Since $x_1 = 0.0244$,

$$x_{1} = \frac{m_{1}/M_{1}}{m_{1}/M_{1} + m_{2}/M_{2} + m_{3}/M_{3}}$$
$$x_{1} = \frac{m_{1}/M_{1}}{m_{1}/M_{1} + \rho_{2}V_{2}/M_{2} + \rho_{3}V_{3}/M_{3}}$$
$$0.0244 = \frac{m_{1}/152.15}{m_{1}/152.15 + 37.5/18 + 0.8 \times 112.5/32}$$

Therefore, the amount of vanillin m_1 was calculated to be 18.61 g, indicating that the vanillin concentration should not exceed 124 mg/mL.

From the chemical equation, 1 mol isoeugenol theoretically produces 1 mol vanillin. Thus, for a 150 mL methanol-water solvent system, isoeugenol concentration should be less than 133.8 mg/mL.

In all the optimization experiments in this work, isoeugenol concentrations were designed below this concentration.

Procedure for solubility study of vanillin and isoeugenol in pure water system was similar just by replacing the solvent of methanol- H_2O with pure water. Besides, the temperature was adjusted to 278.15 K to prevent water from freezing.

ESI 5: Procedure for methanol recycling and production separation

Methanol was recycled according to the following procedure: Methanol was recycled through atmospheric distillation, achieving a recovery rate of above 99%. The recycled methanol was then collected for reuse in subsequent reactions. Vanillin crude product was obtained after ethyl acetate extraction (50 mL EA each time, three times), alkaline washing (NaHCO₃ aq.), atmospheric and vacuum distillation. The crude product was re-crystallized with EtOH/H₂O (mass ratio: 1:3) and purified vanillin product was obtained after filtration and drying.

Scheme S1. Procedure for solvent recovery and product separation.

2 Supporting Figures and Tables

Figure S1: HPLC External Standard Curve for Isoeugenol and Vanillin.

Figure S1. HPLC external standard quantitative curve for (a) isoeugenol and (b) vanillin.

Figure S2. (a) Mid- infrared spectra of vanillin, isoeugenol, reference spectrum (menthanol-H₂O), H₂O, vanillin minus reference spectrum and isoeugenol minus reference spectrum; (b) The corresponding second-order derivative spectra for (a). Vanillin or isoeugenol standard was dissolved in methanol-H₂O.

Figure S3: Mid-infrared quantitative model for isoeugenol and vanillin.

Figure S4: In-situ ATR-IR spectra during the conversion of isoeugenol (second-order derivative spectra).

Figure S4. *in-situ* ATR-IR spectra during the conversion of isoeugenol (second-order derivative spectra).

Figure S5: HPLC graph of the reaction system at 60 min (a) and 70 min (b).

Figure S5. HPLC graph of vanillin (blue curve), isoeugenol standards (green curve) and the reaction system at 60 min (a) and 70 min (b).

Figure S6: HPLC graphs of the reaction system at 268.15 K to 258.15 K.

Figure S6. HPLC graphs of the reaction system at 268.15 K to 258.15 K.

Figure S7: Recyclability test of methanol

Figure S7. Recyclability test of methanol, Experimental conditions: Isoeugenol concentration: 100 mg/mL, V_{methanol} : $V_{\text{H}_{20}}$ =85:15, Reaction temperature: 263.15 K, Gas flux: 1.6 L/min.

^a herein, the vanillin yield refers to the apparent yield calculated directly from ATR-FTIR quantification model based on the absorbance at the peak of 1674 cm⁻¹.

Figure S8: pH variation of the reaction system during isoeugenol ozonation.

Figure S8. pH variation of the reaction system during isoeugenol ozonation.

Figure S9: Mid-infrared spectra of methyl vanillate, vanillic acid, vanillin and isoeugenol.

Figure S9. Mid-infrared spectra of methyl vanillate, vanillic acid vanillin and isoeugenol (second-order derivative spectra).

The relative calibration factor f for vanillic acid to vanillin and methyl vanillate to vanillin were calculated with the following equation:

$$f_{vanillic\ acid} = \frac{\varepsilon_{vanillic\ acid}}{\varepsilon_{vanillin}} = \frac{A_{vanillic\ acid/Avanillin}}{c_{vanillin}/c_{vanillic\ acid}} = 0.2388 \qquad (equation S-2)$$

$$f_{methyl\ vanillate} = \frac{\varepsilon_{methyl\ vanillate}}{\varepsilon_{vanillin}} = \frac{A_{methyl\ vanillate/Avanillin}}{c_{vanillin}/c_{methyl\ vanillate}} = 0.1469 \qquad (equation S-3)$$

Therefore, the vanillin yield pointed out by IR at the reaction endpoint was suggested to be corrected with the following equation:

vanillin yield corrected% = apparent yield% ×

 $\frac{f_{vanillin} \cdot c_{vanillin,endpoint}}{f_{vanillic acid.endpoint + f_methyl vanillate \cdot c_methyl vanillate,endpoint + f_vanillin \cdot c_vanillin,endpoint}, \text{ where } f_{vanillin} = 1$ (equation S-4)

vanillin yield corrected% = 96.99%
$$\times \frac{1 \times 86.98}{0.2388 \times 0.2794 + 0.1469 \times 0.2871 + 1 \times 86.98}$$
 = 96.86%

Figure S10: HPLC graphs during reaction and chromatogram for vanillic acid and methyl vanillate standard.

Figure S10. HPLC graph for (a) reaction system (inset was the enlarged region of the side products); (b) vanillic acid and methyl vanillate standard.

The relative calibration factor f for vanillic acid and methyl vanillate was calculated with the following equation:

$$f = \frac{m_{vanillic \ acid}/A_{vanillic \ acid}}{m_{methyl \ vanillate} \ /A_{methyl \ vanillate}} = 0.6329$$

Figure S11: ¹H NMR data for vanillin (product) and methyl vanillate (by product).

The resolved data for hydrogen spectrum of vanillin (product) obtained as follows: δ 9.82 (s, 1H, -CHO), 7.42 (dd, J = 4.1, 2.4 Hz, 2H, -C₄H, -C₆H), 7.04 (d, J = 8.6 Hz, 1H, -C₃H), 6.31 (s, 1H, -OH), 3.96 (s, 1H, -CH₃).

The resolved data for hydrogen spectrum of methyl vanillate (by product) obtained as follows: δ 7.64 (dd, J = 8.3, 1.9 Hz, 1H, -C₁H), 7.55 (d, J = 1.9 Hz, 1H, -C₂H), 6.94 (d, J = 8.3 Hz, 1H, -C₃H), 6.02 (s, 1H, -OH), 3.95 (s, 3H, -C₄H₃), 3.89 (s, 3H, -C₆H₃).

Figure S11: ¹H NMR data for vanillin (product) and methyl vanillate (by product).

Substances	Absorption Peak Position /cm ⁻¹	Peak Attribution	Reference
	1594	Benzene ring backbone	2, 3
	1515	vibration	
	1292	Bending vibration of the	4.3
Isoeugenol	1275	hydroxyl group	., -
	1159	C-O stretching vibration	3
	966	Stretching vibrations of olefinic C=C bond double substitution (<i>trans</i> -)	4
	1674	Stretching vibrations of the C=O bond of the aldehyde group	2, 3
Vanillin	1592	Benzene ring backbone	23
	1515	vibration	2, 5
	1294	Bending vibration of the	3.4
	1274	hydroxyl group	
	1159	C-O stretching vibration	3

Table S1 Characteristic peaks attributions for isoeugenol and vanillin.

Table S1. Characteristic peaks attributions for isoeugenol and vanillin

Carriel number	Gas Flux	Reaction Time	Isoeugenol conversion	Vanillin Selectivity
Serial number	(L/min)	(min)	(%)	(%)
1	1.4	50	100	92.97±0.34
2	1.6	60	100	96.99±0.38
3	1.8	64	100	96.23±0.27
4	2	65	100	95.80±0.41
5	2.2	68	100	95.18±0.28

Table S2: Effect of gas flux of ozone generator on vanillin

Table S2. Effect of gas flux of ozone generator on vanillin selectivity^a

note:

^a Experimental conditions: Isoeugenol concentration: 100 mg/mL, V_{methanol} : V_{H2O} =85:15, Reaction temperature: 263.15 K.

Table S3: Saturated solubility of vanillin in methanol-water system and pure water system.

Table S3a. Saturated	solubility o	f vanillin i	n methanol-water	system at 258.15 K
				2

Material in Solution	Serial Number	Volume Ratio of Water to Solvent Mixture (%)	Saturated Solubility
	1	25	0.0244
Vanillin	2	20	0.0265
	3	15	0.0304

Table S3b. Saturated solubility of vanillin and isoeugenol in pure water system at 278.15 K

Material in Solution	Solvent	Saturated Solubility
Vanillin	Water	1.06×10^{-4}
Isoeugenol	Water	3.29×10 ⁻⁵

Table S4. Effect of water content on vanillin selectivity ^a				
Serial Number	Volume Ratio of Water to Solvent Mixture (%)	Isoeugenol conversion (%)	Vanillin Selectivity (%)	
1	20	100	90.64±0.46	
2	15	100	96.99±0.40	
3	10	100	92.39±0.27	
4	5	100	91.02±0.39	
5	1	100	71.36±0.38	

Table S4: Effect of water content on vanillin yield

note:

^a Experimental conditions: Isoeugenol concentration: 100 mg/mL, gas flux: 1.6 L/min, Reaction temperature: 263.15 K.

Table S5: Flash point of methanol-water system.

Table S5. F	lash point of methanol-water system	
Volume Ratio of Water to Solvent Mixture / %	Open Flash Point in Air (without O ₃) / K	Open Flash Point with O ₃ / K
40	306.15±0.4	305.75±0.4
30	301.75±0.3	300.55±0.4
20	300.65±0.3	299.05±0.3
15	297.55±0.4	296.65±0.3
12.5	295.65±0.2	296.00±0.1
10	294.65±0.1	295.35±0.2

Table S6: Effect of temperature on vanillin yield

Serial Number	Temperature of Reaction (K)	Vanillin Selectivity (%)
1	268.15	92.57±0.39
2	265.65	92.93±0.41
3	263.15	96.99±0.32
4	260.65	94.66±0.40
5	258.15	90.47±0.36

^a Experimental conditions: Gas flux: 1.6 L/min, Isoeugenol concentration: 100 mg/mL, V_{methanol}: V_{H2O}=85:15.

 Table S7: Comparison of our work and previous studies (mostly) in recent 10 years for the preparation

 of vanillin from isoeugenol and eugenol

Materials	Product	Reaction conditions	Solvent	Oxidant	Conversion	Selectivity
Isoeugenol ⁵	Vanillin	HMFeMo (Catalyst), 80 °C, 24 h	No solvents	tertiary-butyl hydroperoxide	86%	83%
Isoeugenol ⁶	Vanillin	CuOx/rGO carbocatalyst (Catalyst), 4 bar O_2 , 50 °C, 24 h	/	O_2	97%	54%
Isoeugenol ⁷	Vanillin	CeMCM-22 (Catalyst), 60 °C, 90 min	No solvents	H_2O_2	63%	75%
Isoeugenol ⁸	Vanillin	Fe-SBA15-HSO ^{BM-IM} (Catalyst), 90 °C, 1 h	acetonitrile	H_2O_2	93%	50%
Isoeugenol ⁹	Vanillin	humins-containing Fe ₂ O ₃ (Catalyst), 15 bar, 100 °C, 100 min	acetonitrile	H_2O_2	40%	45%
Isoeugenol ¹⁰	Vanillin	1% Fe/RGO (Catalyst), 90 °C, 2 h	acetonitrile	H_2O_2	61%	63%
Isoeugenol ¹¹	Vanillin	Cu-MINT (Catalyst), 80 °C, 6 h	acetonitrile	H_2O_2	58%	88%
Isoeugenol ¹²	Vanillin	0.5Nb/Al-SBA-15 (Catalyst), 90 °C, 2 h	acetonitrile	H_2O_2	69%	66%
Isoeugenol ¹³	Vanillin	CuO/MgAl ₂ O ₄ (Catalyst), 90 °C, 8 h	acetonitrile	H_2O_2	81%	100%
Isoeugenol ¹⁴	Vanillin	sewage sludgederived biomaterial (Catalyst), 90 °C, 1 h	acetonitrile	H_2O_2	80%	65%
Isoeugenol ¹⁵	Vanillin	FeMag-190 (Catalyst), 90 °C, 24 h	acetonitrile	H_2O_2	85%	57%
Isoeugenol ¹⁶	Vanillin	Ir ₁ Cu ₁ -In ₂ O ₃ (Catalyst), 2 bar O ₂ , 70 °C, 2 h	acetonitrile	O_2	/	90.5%
Eugenol ¹⁷	Vanillin	Co(OAc) ₂ • 4H ₂ O (Catalyst), 80 °C, 5.0 equiv NaOH 0.5 atm O ₂ , 20 h	methanol	02	100%	68.5%
Isoeugenol ¹⁸	Vanillin	D∘ 0	EtOAc-H2O	O ₃	/	49%
The present	t work	-10 °C, 1 h	methanol	03	100%	96.86%

Level	$\Delta T_{ad}/{ m K}$	Consequence
1	$\Delta T_{ad} \leq 50$, without pressure influece	When there is no danger of pressure increase due to gas, there will be loss of material in a single batch.
2	$50 < \Delta T_{ad} < 200$	Plant damage.
3	$200 \le \Delta T_{ad} < 400$	The rise of temperature leads to the rise of the reaction rate, and once the reaction is out of control, the system temperature will change dramatically in a short time, resulting in serious losses in the plant.
4	$\Delta T_{ad} \geq 400$	The rise of temperature leads to the rise of the reaction rate, and once the reaction is out of control, the system temperature will change dramatically in a short time, causing devastating losses in the factory.

Table S8: Criteria for assessing the severity of runaway reaction based on ΔT_{ad}

Table S8. Criteria for assessing the severity of runaway reaction¹⁹

Reference

- 1. Y. Wan, P. Zhang, H. He, J. Sha, K. Yang, T. Li and B. Ren, Journal of Chemical & Engineering Data, 2019, 64, 5142-5159.
- A. Vizintin, J. Bitenc, A. Kopac Lautar, J. Grdadolnik, A. Randon Vitanova and K. Pirnat, *ChemSusChem*, 2020, 13, 2328-2336.
- A. R. Kumar, S. Selvaraj, K. S. Jayaprakash, S. Gunasekaran, S. Kumaresan, J. Devanathan, K. A. Selvam, L. Ramadass, M. Mani and P. Rajkumar, *Journal of Molecular Structure*, 2021, 1229, 129490.
- 4. S. Olsztynska-Janus and M. A. Czarnecki, Spectrochim Acta A Mol Biomol Spectrosc, 2020, 238, 118436.
- 5. P. P. Neethu, A. Sreenavya and A. Sakthivel, Applied Catalysis A: General, 2021, 623, 118292.
- 6. A. Bohre, D. Gupta, M. I. Alam, R. K. Sharma and B. Saha, *ChemistrySelect*, 2017, 2, 3129-3136.
- 7. P. Sahu, V. Ganesh and A. Sakthivel, *Catalysis Communications*, 2020, 145, 106099.
- S. Ostovar, A. Franco, A. R. Puente-Santiago, M. Pinilla-de Dios, D. Rodriguez-Padron, H. R. Shaterian and R. Luque, *Front Chem*, 2018, 6, 77-84.
- L. Filiciotto, M. D. Márquez-Medina, A. Pineda, A. M. Balu, A. A. Romero, C. Angelici, E. de Jong, J. C. van der Waal and R. Luque, *Catalysis Today*, 2021, 368, 281-290.
- 10. A. Franco, S. De, A. M. Balu, A. Garcia and R. Luque, Beilstein J Org Chem, 2017, 13, 1439-1445.
- 11. P. García-Albar, N. Lázaro, Z. A. Alothman, A. A. Romero, R. Luque and A. Pineda, Molecular Catalysis, 2021, 506, 111537.
- 12. A. Franco, S. De, A. M. Balu, A. A. Romero and R. Luque, ChemistrySelect, 2017, 2, 9546-9551.
- 13. B. Rahmanivahid, M. Pinilla-de Dios, M. Haghighi and R. Luque, Molecules, 2019, 24, 2597-2615.
- A. Franco, J. Fernandes de Souza, P. F. Pinheiro do Nascimiento, M. Mendes Pedroza, L. S. de Carvalho, E. Rodriguez-Castellón and R. Luque, ACS Sustainable Chemistry & Engineering, 2019, 7, 7519-7526.
- 15. M. D. Marquez-Medina, P. Prinsen, H. Li, K. Shih, A. A. Romero and R. Luque, ChemSusChem, 2018, 11, 389-396.
- 16. X. Zhao, R. Fang, F. Wang, X.-P. Kong and Y. Li, ACS Catalysis, 2022, 12, 8503-8510.
- 17. H. Mao, L. Wang, F. Zhao, J. Wu, H. Huo and J. Yu, Journal of the Chinese Chemical Society, 2016, 63, 261-266.
- A. J. Kendall, J. T. Barry, D. T. Seidenkranz, A. Ryerson, C. Hiatt, C. A. Salazar, D. J. Bryant and D. R. Tyler, *Tetrahedron Letters*, 2016, 57, 1342-1345.
- 19. Specification for safety risk assessment of fine chemical reactions[S]. GB/T42300-2022, 2022.