Electronic Supporting Information

Title	Sequences (5' to 3')
Chain ii	TGG TTA GTT ACC GTT TTG TC T AAT GAC TC CCG GTT AGG
	AAG CAG GGA CGA AAC AAG AAC CAT AAC TGG TTA GTT
	ACC GTT TTG TC
F23	CCC CCG TTG CTT TCG CTT TTC CTT TCG CTT TTG TTC GTT
aptamer	TCG TCC CTG CTT CCT TTC TTG
Chain i	GTT ATG GTT CTT GTT TTA GAA CAA AAG CGA CCT AAC
	CGG
Template	TGG TTA GTT ACC GTT TTG TC T AAT GAC TC TGG TTA GTT
sequence	ACC GTT TTG TC
sgRNA	GCU UCA CUG AUA AAG UGG AGA ACC GCU UCA CCA AAA
	GCU GUC CCU UAG GGG AUU AGA ACU UGA GUG AAG GUG
	GGC UGC UUG CAU CAG CCU AAU GUC GAG AAG UGC UUU
	CUU CGG AAA GUA ACC CUC GAA ACA AAU UCA UUU GAA
	AGA AUG AAG GAA UGC AAC UGG UUA GUU ACC GUU UUG
	UC

Table S1. The DNA sequences used in this study.

Table S2. A brief comparison of the m	ethod with f	ormer ones
---------------------------------------	--------------	------------

Title	Mechanism	Recognizin	LOD	Time	Signal	Cell	Ref
		g molecule			mode	lysis	
The	Chain extension+	F23 aptamer	3.4 cfu/mL	30	Fluoresce	No	
method	target recycling			min	nce		
TMB	MBs based	F23 aptamer	20 cfu/mL	60	Color	No	1
based	enrichment			min			
Isolation	MBs based	F23 aptamer	10 cfu/mL	90	Fluoresce	No	2
method	enrichment			min	nce		
CRISPR-	Trans-cleavage	Genomic	50 cfu/mL	120	Fluoresce	Yes	3
Cas	activity of	material		min	nce		
system	Cas12a						

Note: MBs, magnetic beads; LOD, limit of detection; TMB, 3,3',5,5'-tetramethylbenzidine

Supplemented experimental section

Specificity test

Three solution samples were prepared before conducting the detection procedures, including the solution A, solution B, and solution C. In details, the solution A contains 2 μ L of *P. aeruginosa* or interfering bacteria, 2 μ L of 5 × NEB buffer, 2 μ L of dNTP (5 mM), 2 μ L of TWJ probe (5 nM), and 2 μ L of TWJ template (0.5 nM); the solution B was composed of 0.3 U/ μ L of Nt.BstNBI nicking endonuclease, 0.02 U/ μ L of Vent

(exo-) DNA polymerase, and 2 μ L of ThermoPol reaction buffer; the solution C contains 2 μ L of Cas14a1 reaction buffer, 1 μ L of Cas14a1 protein (125 nM), 1 μ L of sgRNA (500 nM), and 2 μ L of "Reporter probe" (400 nM). For specificity test, the solution A was incubated at room temperature for 10 min and was then mixed with solution B, which was placed in a T100 Thermal Cycler (BIO-RAD) at 40 °C for 20 min. After incubation, 4 μ L amplified product was taken out and further mixed with the solution C. The fluorescence signal of final mixture was immediately detected by Hitachi fluorescence spectrophotometer F-4700 (Tokyo, Japan) at 37 °C.

References:

1. Wu, Z.; He, D.; Cui, B.; Jin, Z., A bimodal (SERS and colorimetric) aptasensor for the detection of Pseudomonas aeruginosa. *Mikrochim. Acta* **2018**, *185* (11), 528.

2. Zhong, Z.; Gao, X.; Gao, R.; Jia, L., Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles. *Mikrochim. Acta* **2018**, *185* (8), 377.

3. Huang, S.; Wang, X.; Chen, X.; Liu, X.; Xu, Q.; Zhang, L.; Huang, G.; Wu, J., Rapid and sensitive detection of Pseudomonas aeruginosa by isothermal amplification combined with Cas12a-mediated detection. *Sci. Rep.* **2023**, *13* (1), 19199.