# SUPPORTING INFORMATION

# Fluorescent probe based on pyrazoline with significant Stokes shifts

# for the detection of Cu<sup>2+</sup> ion and its applications

Yajing Shang\*, Xinghu Wu, Haoting Luo

School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University,

Lanzhou, 730070, China

\*Corresponding authors.

E-mail addresses: <a href="mailto:shangyaj@mail.lzjtu.cn">shangyaj@mail.lzjtu.cn</a>

# **Table of Contents**

| 1. Experimental section                                       | .2 |
|---------------------------------------------------------------|----|
| 1.1 Materials and instruments                                 | .2 |
| 1.2 Synthesis of compound                                     | .2 |
| 1.3 Spectrophotometric measurements                           | .3 |
| 1.4 Determination of relative quantum yield                   | .3 |
| 1.5 Cell Culture                                              | 3  |
| 1.6 MTT assay                                                 | .3 |
| 1.7 Imaging of Cu <sup>2+</sup> in Living Cells and zebrafish | 3  |
| 2. <sup>1</sup> H NMR, <sup>13</sup> C NMR and ESI-MS         | .4 |
| 4. Figure                                                     | .5 |
| 5.Reference                                                   | 10 |

## **1. Experimental section**

#### 1.1 Materials and instruments

The reagents and drugs utilized in this study primarily consist of commercially sourced dehydroacetic acid, benzaldehyde, trichloromethane, ethanol, benzoquinone, glacial acetic acid, dimethyl sulfoxide (DMSO), etc., which were employed without further purification. All solvents used in this research were of analytical grade. The reaction progress was monitored using thin-layer chromatography (TLC) and observed under a UV lamp at either 254 nm or 365 nm. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) and carbon-13 nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were acquired on a Brook AVIII-500 MHz spectrometer at 25°C. Chemical shifts for both <sup>1</sup>H NMR and <sup>13</sup>C NMR were referenced to the residual solvent peak (CDCl<sub>3</sub>:  $\delta$  = 7.27 ppm; DMSO-d6:  $\delta$  = 2.5 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), and integral value. Fluorescence spectra were recorded using an F97pro fluorescence spectrophotometer. Melting points were determined utilizing an XD-4 digital micromelting point instrument. Infrared spectra spanning the range of 4000-400 cm-1 and electrospray ionization mass spectrophotometer and Q-Exactive mass spectrometer respectively.

#### 1.2 Synthesis of compound



### Scheme 1. Synthesis of compound BBD Synthesis of compound 1

The synthesis of chalcone 1 was conducted following the procedure described in literature <sup>1</sup>. Synthesis of BBD (3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)-4-hydroxy-6-methyl-2H-pyran-2-one)

Combine chalcone 1(0.3469g, 1mmol), phenyl hydrazine (0.1081g, 1mmol), and NaOH (0.004g, 0.1mmol) with anhydrous ethanol and stir the mixture for 12 hours under reflux conditions. Subsequently, remove a portion of the ethanol via reduced pressure evaporation and introduce 50 ml of distilled water. Adjust the pH to neutral by adding dilute hydrochloric acid, resulting in the formation of a yellow precipitate. Filter the mixture, wash it with water, dry thoroughly, and purify through column chromatography to obtain a solid product exhibiting a yellow coloration. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  13.35 (s, 1H), 7.37 - 7.23 (m, 6H), 7.19 (dd, J = 8.7, 7.2 Hz, 1H), 6.88 (s, 1H), 6.87 - 6.80 (m, 2H), 6.04 (s, 1H), 5.13 (dd, J = 12.3, 8.0 Hz, 1H), 4.16 (dd, J = 18.9, 12.3 Hz, 1H), 3.49 (dd, J = 18.9, 8.0 Hz, 1H), 2.26 (s, 3H), 1.57 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  170.56, 163.22, 149.83, 144.15, 141.86, 129.17, 127.74, 125.87, 120.01, 113.23, 101.10, 63.41, 46.37, 20.19.

#### **1.3 Spectrophotometric measurements**

The metal ion stock solutions (5 mM) were prepared by dissolving various metal salts in deionized water, including Ag<sup>+</sup>, Al<sup>3+</sup>, Ba<sup>2+</sup>, Ca<sup>2+</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>, Cr<sup>3+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup>, Hg<sup>2+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, Na<sup>+</sup>, Ni<sup>2+</sup>, Pb<sup>2+</sup> and Zn<sup>2+</sup>. The probe BBD stock solution (5 mM) was prepared by dissolving the probe BBD in DMSO. For UV and fluorescence emission spectroscopy experiments, 20  $\mu$ l of probe BBD and 20  $\mu$ l of the respective metal ion stock solutions were added to ethanol/Hepes buffer (1:1, v/v), resulting in a final volume of 2 ml. In the fluorescence measurement, the excitation and emission wavelengths were set at 398 nm and 520 nm, respectively. The excitation and emission slit widths were adjusted to 10 nm.

#### 1.4 Determination of relative quantum yield

The fluorescence quantum yield of the sample in ethanol is determined by relative measurement method. The quantum yield is calculated using the following formula:

$$\Phi_{F(X)} = \Phi_{F(S)} \times \left(\frac{A_S \times F_X}{A_X \times F_S}\right) \left(\frac{n_X}{n_S}\right)^2$$

 $\Phi_F$ : Fluorescence quantum yield, S/X: standard / test, A<sub>S</sub>/A<sub>X</sub>: The absorbance of the standard / test solution, F<sub>S</sub> / F<sub>X</sub>: Integrated area of fluorescence for solutions of standards / test, n: The refraction coefficient of different solvents.

The absorbance of the test sample and the standard sample at their respective maximum absorption points is controlled to be below 0.05. The standard sample is Rhodamine B, which has a fluorescence quantum yield of 0.89 in ethanol.

#### 1.5 Cell Culture

The Hela cells (human cervical cancer cells) were utilized as the experimental model in this study. These cells were cultured in DMEM medium supplemented with 10% FBS and 1% penicillinstreptomycin mixture, followed by incubation at 37°C under a controlled atmosphere of 5% CO<sub>2</sub>.

#### 1.6 MTT assay

The HeLa cells were seeded in 96-well plates at a density of  $7 \times 10^4$  L<sup>-1</sup> and incubated for 24 hours. Subsequently, the old medium was replaced with fresh medium (100 µL) containing varying concentrations of probes. The cells were further incubated for an additional 12 hours. Following this, a mixture of MTT and medium (1:9) (110 µL) was added to each well and incubated for 4 hours. After discarding the mixture, DMSO (100 µL) was added to each well. The absorbance at 570 nm was measured using a Thermo (Multiskan MK3) microplate reader. Finally, the percentage of cell viability was calculated relative to the control well designated as having 100% live cells.

### 1.7 Imaging of Cu<sup>2+</sup> in Living Cells and zebrafish

Imaging of exogenous  $Cu^{2+}$  cell probes was studied. In the first group, cells were incubated with PBS buffer for 30 min. In the second group, cells were incubated with BBD (30  $\mu$ M) for 30 min. In the third group, cells were first incubated with  $Cu^{2+}$  (100  $\mu$ M) for 30 min, and then treated with BBD (30  $\mu$ M) for 30 min. Fluorescence images of the cells were obtained by confocal laser scanning microscopy.

The probe was imaged in zebrafish. In the first group, zebrafish were incubated with PBS buffer for 30 minutes. In the second group, zebrafish were incubated with BBD (20  $\mu$ M) for 30 minutes. In the third group, zebrafish were incubated with Cu<sup>2+</sup> (100  $\mu$ M) for 30 minutes, followed by

incubation with BBD (20  $\mu$ M) for 30 minutes. Fluorescent images of zebrafish were obtained using a confocal laser scanning microscope.

# 2. <sup>1</sup>H NMR, <sup>13</sup>C NMR and ESI-MS



Fig. S2 <sup>13</sup>C NMR spectrum of probe BBD in CDCl<sub>3</sub> at room temperature.



Fig. S3. ESI-MS spectrum of probe [BBD-H<sup>+</sup>].



Fig. S4 ESI-MS spectrum of probe  $[2(BBD-H^+)+Cu^{2+}-2H^+]$ .

## 4. Figure



**Fig. S5** A) UV spectra of probes in different solvents; B) Fluorescence spectra of probes in different solvents.



**Fig. S6** A) The fluorescence intensity of compound BBD (20  $\mu$ M,  $\lambda$ ex = 398 nm) at different pH values (2.5-12). B) Fluorescence color images of compound BBD (20  $\mu$ M) at different pH values (3-12).



Fig. S7 Under 364 nm UV light, the fluorescence color images of the probe (50  $\mu$ M) in different concentrations of Cu<sup>2+</sup> solution.



Fig. S8 Relative fluorescence quantum yield of probe BBD.



Fig. S9 Fluorescence intensity of probe BBD when alternately adding 1 equivalent of  $Cu^{2+}$  and EDTA.



Fig. S10 Infrared spectra of probe BBD and its complexes with  $Cu^{2+}$  ions.

| Probe                    | $\lambda_{ex}/\lambda_{em}$ | Time  | solvent system                         | LOD                             | Application                                                                      | Referenc<br>e |
|--------------------------|-----------------------------|-------|----------------------------------------|---------------------------------|----------------------------------------------------------------------------------|---------------|
|                          | 398<br>nm/520<br>nm         | 20s   | Ethanol/H <sub>2</sub> O (1:1,<br>V/V) | 8.62 × 10 <sup>-7</sup> M       | Hela cells<br>zebrafish                                                          | This work     |
| QN<br>Store to<br>N-N-to | 335nm/<br>408-<br>432 nm    | -     | DMF/H <sub>2</sub> O (9:1,<br>V/V)     | -                               | -                                                                                | 2             |
|                          | 275<br>nm/417<br>nm         |       | Ethanol/H <sub>2</sub> O (1:1,<br>V/V) | $8.85\times10^{-7}\mathrm{M}$   | PK-21 cells                                                                      | 3             |
| N HO NN                  | 492nm/<br>519nm             | ≤1min | H <sub>2</sub> O/DMSO<br>(1:5, V/V)    | 2.5×10 <sup>−7</sup> M          | Real water<br>sample<br>Test strips                                              | 4             |
| NN OH CO                 | 423nm/<br>535nm             | -     | Hepes                                  | 2.9× 10⁻ <sup>8</sup> M         | Test strips<br>Wine and<br>beer                                                  | 5             |
|                          | 730nm/<br>810nm             | 60s   | H <sub>2</sub> O/DMSO<br>(99:1, V/V)   | $0.54 \times 10^{-6} \text{ M}$ | H22 cell<br>H22 tumor<br>bearing<br>mice                                         | 6             |
| at for the               | 792nm/<br>810nm             | 40min | HEPES(containin<br>g<br>0.1% CrEL)     | 0.53 × 10 <sup>-7</sup> M       | SH-SY5Y<br>cells<br>Arabidopsis<br>Roots<br>Neuroblasto<br>-ma Tumors<br>In vivo | 7             |

Table S1. Comparison with previously reported  $\mathrm{Cu}^{2+}$  fluorescent probes.

| BBD TD-DFT/B3LYP/6-31G (d, p)  |         |             |                 | BBD-Cu <sup>2+</sup> |                | TD-DFT/B3LYP/lanl2dz |           |
|--------------------------------|---------|-------------|-----------------|----------------------|----------------|----------------------|-----------|
| Bond length (Å) Bond Angle (°) |         |             | Bond length (Å) |                      | Bond Angle (°) |                      |           |
| C1-C2                          | 1.54773 | C1-C2-N6    | 101.63071       | C1-C2                | 1.55463        | C1-C2-N6             | 101.18186 |
| C1-C7                          | 1.50864 | C2-N6-N5    | 112.65119       | C1-C7                | 1.52804        | C2-N6-N5             | 111.96214 |
| C2-N6                          | 1.47128 | N6-N5-C7    | 106.86213       | C2-N6                | 1.48617        | N6-N5-C7             | 109.21139 |
| C7-N5                          | 1.33081 | C1-C7-N5    | 113.19091       | C7-N5                | 1.34321        | C1-C7-N5             | 110.72106 |
| N5-N6                          | 1.43002 | C7-C1-C2    | 103.02763       | N5-N6                | 1.40957        | C7-C1-C2             | 103.67356 |
| N6-C8                          | 1.34311 | N5-C7-C19   | 121.34366       | N6-C8                | 1.40110        | N5-C7-C19            | 125.19508 |
| C8-C9                          | 1.43396 | C1-C7-C19   | 125.46168       | C8-C9                | 1.42067        | C1-C7-C19            | 124.07794 |
| C8-C10                         | 1.43481 | C7-C19-C20  | 121.25195       | C8-C10               | 1.41860        | C7-C19-C20           | 123.20887 |
| C9-C11                         | 1.38106 | C7-C19-C21  | 119.46428       | C9-C11               | 1.40283        | C7-C19-C21           | 117.66540 |
| C10-C13                        | 1.38383 | C19-C20-C22 | 119.61086       | C10-C13              | 1.40355        | C19-C20-C22          | 118.59126 |
| C13-C15                        | 1.40409 | C20-C22-C23 | 120.12809       | C13-C15              | 1.41033        | C20-C22-C23          | 121.68638 |
| C15-C11                        | 1.40876 | C22-C23-O40 | 121.15465       | C15-C11              | 1.41167        | C22-C23-O39          | 120.03915 |
| C7-C19                         | 1.42176 | C23-O40-C21 | 122.62611       | C7-C19               | 1.44188        | C23-O39-C21          | 123.04782 |
| C19-C21                        | 1.43960 | O40-C21-C19 | 117.18645       | C19-C21              | 1.45414        | O39-C21-C19          | 117.42589 |
| C21-O40                        | 1.40551 | C19-C21-O25 | 127.50303       | C21-O39              | 1.43372        | C19-C21-O25          | 128.59330 |
| O40-C23                        | 1.37360 | O25-C21-O40 | 115.30873       | O39-C23              | 1.39121        | O25-C21-O39          | 113.97698 |
| C23-C22                        | 1.37787 | O40-C23-C26 | 112.16651       | C23-C22              | 1.35971        | O39-C23-C26          | 112.35802 |
| C20-C22                        | 1.39788 | C22-C23-C26 | 126.67523       | C20-C22              | 1.45485        | C22-C23-C26          | 127.60137 |
| C19-C20                        | 1.44927 | C19-C20-O30 | 122.15453       | C19-C20              | 1.44889        | C19-C20-O30          | 123.78635 |
| C21-O25                        | 1.22271 | C22-C20-O30 | 118.18718       | C21-O25              | 1.25226        | C22-C20-O30          | 117.62072 |
| C20-O30                        | 1.34915 | C2-C33-C34  | 121.40901       | C20-O30              | 1.30029        | C2-C32-C33           | 121.85139 |
| C23-C26                        | 1.48732 | C33-C34-C35 | 120.27549       | C23-C26              | 1.49670        | C32-C33-C34          | 120.02925 |
| C2-C33                         | 1.52490 | C34-C35-C37 | 120.32488       | C2-C32               | 1.53156        | C33-C34-C36          | 120.45735 |
| C33-C34                        | 1.40161 | C35-C37-C41 | 119.65377       | C32-C33              | 1.41101        | C34-C36-C40          | 119.57760 |
| C34-C35                        | 1.39627 | C37-C41-C43 | 120.02262       | C33-C34              | 1.40913        | C36-C40-C42          | 120.02844 |
| C35-C37                        | 1.39816 | C41-C43-C33 | 120.57385       | C34-C36              | 1.40914        | C40-C42-C32          | 120.48127 |
| C37-C41                        | 1.39678 | C43-C33-C2  | 119.41219       | C36-C40              | 1.40994        | C42-C32-C2           | 118.68146 |
| C41-C43                        | 1.39756 | C2-N6-C8    | 127.23758       | C40-C42              | 1.40767        | C2-N6-C8             | 125.09288 |
| C43-C33                        | 1.40058 | N5-N6-C8    | 120.00940       | C42-C32              | 1.41213        | N5-N6-C8             | 121.85680 |
|                                |         | N6-C8-C9    | 121.01824       | N5-Cu87              | 2.06257        | N6-C8-C9             | 119.59311 |
|                                |         | C8-C9-C11   | 119.94869       | O30-Cu87             | 2.05686        | C8-C9-C11            | 119.92284 |
|                                |         | C9-C11-C15  | 121.05453       |                      |                | C9-C11-C15           | 120.83556 |
|                                |         | C11-C15-C13 | 119.42611       |                      |                | C11-C15-C13          | 119.16467 |
|                                |         | C15-C13-C10 | 121.08443       |                      |                | C15-C13-C10          | 120.64124 |
|                                |         | C13-C10-C8  | 119.88008       |                      |                | C13-C10-C8           | 120.15769 |
|                                |         | C10-C8-N6   | 120.38339       |                      |                | C10-C8-N6            | 121.13551 |
|                                |         | C10-C8-C9   | 118.59794       |                      |                | C10-C8-C9            | 119.24417 |
|                                |         |             |                 |                      |                | C7-N5-Cu87           | 126.53676 |
|                                |         |             |                 |                      |                | N6-N5-Cu87           | 120.76052 |
|                                |         |             |                 |                      |                | C20-O30-Cu87         | 130.01361 |

Table S2. Optimized bond lengths and angles for the excited states of BBD and BBD-Cu<sup>2+</sup>.



Fig. S11 Electrostatic potential diagram of BBD and BBD-Cu<sup>2+</sup>.



**Fig. S12** Hela cells were incubated with different concentrations of BBD probes for 12 hours, and the cell viability was evaluated (%).

# **5.Reference**

- Y.J. Shang, Y.Y. Li, X.H. Wu, J. Li, A novel pyrazoline-based turn-on fluorescent probe for highly sensitive detection of Al<sup>3+</sup> in aqueous solution and its applications, Chem. Pap. 78 (2024) 1659–1670, https://doi.org/10.1007/s11696-023-03193-5.
- A.M. Asiri, N.S.M. Al-Ghamdi, H. Dzudzevic-Cancar, P. Kumar, S.A. Khan, Physicochemical and Photophysical investigation of newly

synthesized carbazole containing pyrazoline-benzothiazole as fluorescent chemosensor for the detection of  $Cu^{2+}$ ,  $Fe^{3+}$  &  $Fe^{2+}$  metal ion, J. Mol. Struct. 1195 (2019) 670-680, https://doi.org/10.1016/j.molstruc.2019.05.088.

- Y.P. Zhang, Y.C. Zhao, Q.H. Xue, Yu.S. Yang, H.C. Guo, J.J. Xue, A novel pyrazoline-based fluorescent probe for Cu<sup>2+</sup> in aqueous solution and imaging in live cell, Inorg. Chem. Commun. 129 (2021) 108612, <u>https://doi.org/10.1016/j.inoche.2021.108612</u>.
- A. Maiti, S. Ahamed, M. Mahato, et al. A Julolidine Coupled Azinebased Reversible Chromo-fluorogenic Probe for Specific Detection of Cu<sup>2+</sup> Ions, J Fluoresc (2024). <u>https://doi.org/10.1007/s10895-023-03577-6</u>.
- H. Hu, L. Xue, Y.L. Yao, L.L. Deng, H.B. Wang, A novel fluorescent probe used for the detection of Cu<sup>2+</sup> in water system with AIE properties, J. Mol. Struct. 1315 (2024) 138878, <u>https://doi.org/10.1016/j.molstruc.2024.138878</u>.
- T. Zhang, H.R. Chi, Guo, J.J. Guo, X.M. Lu, G.L. Li, Construction of a Cu<sup>2+</sup>-Responsive NIR Fluorescent Probe and the Preliminary Evaluation of its Multifunctional Application, J. Fluoresc, (2024). https://doi.org/10.1007/s10895-024-03610-2.
- J.P. Zhu, Marcus E. Graziotto, Veronica Cottam, Tom Hawtrey, Liam
  D. Adair, Benjamin G. Trist, Nguyen T.H. Pham, Jourdin R. C.

Rouaen, Carolyn Ohno, Marcus Heisler, Orazio Vittorio, Kay L. Double, Elizabeth J. New, Near-Infrared Ratiometric Fluorescent Probe for Detecting Endogenous Cu<sup>2+</sup> in the Brain, ACS Sens, 9 (2024) 2858–2868. <u>https://doi.org/10.1021/acssensors.3c02549</u>.