An electrochemical sensor based on electrodeposited methylene blue on carbon nanotube decorated hydrogel for the detection of ascorbic acid

Linghui Tang^a, Yufeng Huang^b, Zhihuan Qian^a, Jifan Zhao^a, Yasushi Hasebe^c, Yan Dong^a, Yue Wang^{a,*}

^a School of Chemical Engineering, University of Science and Technology Liaoning, 189

Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China.

^b School of International Education, University of Science and Technology Liaoning,

189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning, 114051, China.

^c Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan.

* Corresponding author: wangyue@ustl.edu.cn (Yue Wang)

Content

Fig. S1 Polymerization procedure of the hydrogel.

Fig. S2. SEM images of (a) HG/GCE (100 x); (b) CNT/HG (100 x); (c) CNT/HG (10000 x); (d-g) EDS spectra of CNT/HG.

Fig. S3. (a) SEM image of MB/CNT/HG/GCE; (b-f) EDS spectra of MB/CNT/HG/GCE.

Fig. S4. AFM images of modified electrodes with 2D and 3D topographies: (a) CNT/HG/GCE; (b) MB/CNT/HG/GCE.

Fig. S5. (A) XPS spectra of the CNT/HG; (B) C 1s spectrum; (C) N 1s spectrum; (D) O 1s spectrum; (E) S 2p spectrum.

Fig. S6. Stress-strain curves of hydrogel with (blue line) and without (red line) the addition of CNT. Inset: the pictures of HG (transparent) and CNT/HG (black).

Fig. S7 Cyclic Stability measurement of the sensor by using CV method. (a) Stability of the sensor under 100 cycles of CV testing for 250 μ M of AA; (b) Comparison of the current retention of the sensor for the 1st to the 100th cycle of AA (250 μ M). The experiments were performed in 0.1 M PBS (pH 7.0).

Table. S1 Analysis elemental content of MB/CNT/HG/GCE.

Table. S2 Comparison of MB/CNT/HG/GCE performance with other documented nonenzymatic AA sensing features.

Information S1 Calculation of Electrochemically Active Surface Area

Fig. S2. SEM images of (a) HG/GCE (100 x); (b) CNT/HG (100 x); (c) CNT/HG (10000 x); (d-g) EDS spectra of CNT/HG.

Fig. S3. (a) SEM image of MB/CNT/HG/GCE; (b-f) EDS spectra of MB/CNT/HG/GCE.

Fig. S4. AFM images of modified electrodes with 2D and 3D topographies: (a) CNT/HG/GCE; (b) MB/CNT/HG/GCE.

Fig. S5. (A) XPS spectra of the CNT/HG; (B) C 1s spectrum; (C) N 1s spectrum; (D) O 1s spectrum; (E) S 2p spectrum.

Fig. S6. Stress-strain curves of hydrogel with (blue line) and without (red line) the addition of CNT. Inset: the pictures of HG (transparent) and CNT/HG (black).

Fig. S7. Cyclic Stability measurement of the sensor by using CV method. (a) Stability of the sensor under 100 cycles of CV testing for 250 μ M of AA; (b) Comparison of the current retention of the sensor for the 1st to the 100th cycle of AA (250 μ M). The experiments were performed in 0.1 M PBS (pH 7.0).

elemental	atomic number	net value	Normalized Quality%
С	6	7229	59.02
Ν	7	666	12.49
0	8	1110	9.59
S	16	2616	11.62
Cl	17	1304	7.28

Table. S1 Elemental content of MB/CNT/HG/GCE.

Table. S2 Comparison of MB/CNT/HG/GCE performance with other documented nonenzymatic AA sensing features.

Materials	Detection Potential/V	linear range/mM	Detection limit / μM	Reference
CuO-SPE	+0.4	0.1-8.0	88	S1
CuO hollow sphere/SPE	+0.55	0.1-7.0	90	S2
Carbon fibers/ZnO	+0.26	0.60-1.8	156.7	S3
Graphene-PtNP/GCE	0.0	0.42-2.9	300	S4
Graphene nanosheets	+0.37	0.4-6.0	120	S5
MB/CNT/HG	+0.3	0.1-10.0	50	This work

Information S1 Calculation of Electrochemically Active Surface Area

Using the Randles-Sevcik equation, the effective surface area (A_{eff}) of the MB/CNT/HG/GCE electrode was estimated based on the CV values obtained in a 0.1 M PBS solution containing 5.0 mM Fe(CN)3-/4- 6 at a scan rate of 0.05 Vs⁻¹.

$$I_p = 2.69 \times 10^5 A n^{\frac{3}{2}} D_0^{\frac{1}{2}} v^{\frac{1}{2}} C_0$$

In the formula, *n* represents the number of electrons involved in the redox process (for Fe(CN)3-/4- 6, n=1), D_0 is the diffusion coefficient of the molecule in solution (for Fe(CN)3-/4- 6 in 0.1 M PBS solution is 0.673×10^{-5} cm² s⁻¹). C_0 is the volumetric concentration of the redox probe ($C_0 = 5.0$ mM Fe(CN)3⁻/4⁻ 6). The measurement condition is with a scan rate of 50 mV/s. The calculated I_p was 124.4 and the A_{eff} of the electrode was 0.1594 cm².

Reference

- S1. M. Khairy and B. G. Mahmoud, *Electroanalysis*, 2016, 28, 2606-2612.
- S2. B. G. Mahmoud, M. Khairy, F. A. Rashwan, C. W. Foster and C. E. Banks, *RSC Advances*, 2016, **6**, 1447414482.
- S3. B. Gu, Z. Liu, X. Wang and X. Dong, *Materials Letters*, 2016, **181**, 265-267.
- S4. M. A. Kumar, V. Lakshminarayanan and S. S. Ramamurthy, *Comptes Rendus*. *Chimie*, 2018, **22**, 58-72.
- S5. G. P. Keeley, A. O'Neill, N. McEvoy, N. Peltekis, J. N. Coleman and G. S. Duesberg, *Journal of Materials Chemistry, 2010, 20.*