Non-suppressed ion chromatography-tandem electrospray mass spectrometry using a short column for simultaneous analysis of dichloroacetic acid, trichloroacetic acid, and bromate: Aqueous ammonia as the eluent additive

Mingguo Peng^{1‡}, Jiali Chen^{1‡}, Shi Cheng^{2,3**}, Huaicheng Zhang⁴, Liangtao Pu¹,

Erdeng Du¹, Qingfeng Cheng¹, Yanting Zuo^{1,5*}, Aimin Li³

¹ School of Urban Construction, Changzhou University, Changzhou 213164, China

² School of Resources and Environmental Engineering, Jiangsu University of

Technology, Changzhou 213001, China

³ State Key Laboratory of Pollution Control and Resources Reuse, School of the

Environment, Nanjing University, Nanjing 210023, China

⁴ School of Environment and Safety Engineering, Nanjing Polytechnic Institute,

Nanjing 210048, China

⁵ State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the

Middle and Lower Reaches of Yangtze River, Nanjing 210036, China

‡ Both authors contributed equally to this work.

Corresponding Authors: *Dr. Yanting Zuo Email: <u>zuoyanting@cczu.edu.cn</u> ** Associate Prof. Shi Cheng

Email: shicheng nju@163.com; shicheng@jsut.edu.cn

This supporting information contains 2 texts, 3 tables, and 1 figure with 8 pages.

Text S1

(1) Calculation of ${}^{s}_{s}pK_{a}$

At high proportions of acetonitrile, the "apparent" pK_a values of DCAA and TCAA in acetonitrile-water solvent $({}^{s}pK_a)$ increase significantly from the pK_a values of the same compounds in water $({}^{w}_{w}pK_a)$, because acetonitrile is a poor hydrogen bond donor, with weak solvation of H⁺ relative to water ^[1,2].

In the water-acetonitrile solvent mixtures, the relationship between ${}^{s}_{s}pK_{a}$ and ${}^{w}_{w}pK_{a}$ is described by *Eq. (S1)*. The slope $({}^{a}{}_{s})$ and intercept $({}^{b}{}_{s})$ values vary with the changes in acetonitrile proportions, and can be calculated using *Eq. (S2)* and *Eq. (S3)*, where a₁, a₂, a₃, a₄, b₁, b₂, b₃ and b₄ are fitting parameters as reported by Espinosa et al. [1] The ${}^{a}{}_{s}$ and ${}^{b}{}_{s}$ data in **Table S2** for amines and aliphatic carboxylic acids were calculated using *Eq. (S2)* and *Eq. (S3)*.

$${}^{s}_{s}pK_{a} = a_{sw}^{w}pK_{a} + b_{s}$$
(Eq. S1)

$$a_{s} = \frac{1 + a_{1} * v_{ACN} + a_{2} * v_{ACN}^{2}}{1 + a_{3} * v_{ACN} + a_{4} * v_{ACN}^{2}}$$
(Eq. S2)

$$b_{s} = \frac{b_{1} * v_{ACN} + b_{2} * v_{ACN}^{2}}{1 + b_{3} * v_{ACN} + b_{4} * v_{ACN}^{2}}$$
(Eq. S3)

The ${}^{s}_{s}pK_{a}$ values of ammonia, DCAA, and TCAA for varying proportions of acetonitrile in mobile phase were calculated from Eq. S1, and are summarized in Table S2.

(2) Calculation of mobile phase pH

The pH values of mobile phases with different aqueous/acetonitrile proportions were calculated from charge balance and acid-base equilibrium expressions as per Eq. (S4) and Eq. (S5). The calculated pH values are summarized in Table S2.

$$[OH^{-}] = [H^{+}] + [NH^{+}_{4}]$$
(Eq. S4)

$$0 = 10^{-pH} + [ammonia]_{mobile \ phase} * 1/(1 + 10^{pH - pK_a}) - 10^{pH - 14}$$
(Eq. S5)

(3) Calculation of logK_{ow}*

The log K_{ow} values represent the octanol/water partition coefficients of the HAAs' undissociated forms, as opposed to their dissociated forms. In aqueous mobile phases with pH >12, HAAs are ~100% dissociated. However, as the proportion of acetonitrile in the mobile phase is increased, the extent of deprotonation is decreased – on account of the aforementioned increase in ${}^{s}pK_{a}$ for the HAAs with increasing acetonitrile proportion. The proportion of the HAAs present in their undissociated form, α , therefore increases with increasing acetonitrile proportion for a given pH, according to *Eq. (S6)*,

$$\alpha = / \sum_{1 \ (1 + 10^{pH - \frac{s}{s}pK_a})}^{pH - \frac{s}{s}pK_a}$$
(Eq. S6)

where α is the proportion of the HAAs present in their undissociated form.

Noting again that the $\log K_{ow}$ values correspond to the undissociated forms of each HAA, and assuming that the dissociated (anionic) forms of the HAAs exhibit comparably negligible values of $\log K_{ow}$, the values of "apparent" $\log K_{ow}$ * (equivalent to the log-scale distribution ratio, $D_{ow} = [HA]_{o,tot}/([HA]_w+[A^-]_w))$ for a given HAA can be approximated at particular pH values as per *Eq. (S7)*.^[3]

$$logK_{ow}^{*} = log(\alpha \times K_{ow}) = log\alpha + logK_{ow}$$
(Eq. S7)

The values of $\log \alpha$ and $\log K_{ow}^*$ determined for DCAA and TCAA at different acetonitrile proportions are summarized in **Table S2**.

Text S2

Limits of detection (LODs) were calculated as standard deviation (SD) × Student's t value for a 99% confidence level with $n - 1 = 7^{\circ}$ of freedom, and limits of quantification (LOQs) were calculated as 3 × LODs, this method was referenced the work from L.A. Currie ^[4].

Reference:

[1] Espinosa S., Bosch E., Rosés M. Retention of ionizable compounds in highperformance liquid chromatography: 14. Acid–base pK values in acetonitrile–water mobile phases. Journal of Chromatography A. 2002, 964: 55-66.

[2] Rossini, E., Bochevarov, A. D., Knapp, E. W. Empirical Conversion of pKa Values between Different Solvents and Interpretation of the Parameters: Application to Water, Acetonitrile, Dimethyl Sulfoxide, and Methanol. Acs Omega. 2018, 3:1653-1662.

[3] Schwarzenbach RPG, P. M.; Imboden, D. M. Environmental Organic Chemistry. Hoboken, NJ: John Wiley & Sons, Inc., 2003.

[4] Currie L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta. 1999, 391(2):105-126.

-	DDD	Precursor ion		Product ion		Collision	Collision cell	Declustering	Entrance
_	DBPS	m/z	Transition	m/z	Transition	energy (volts)	exit potential (volts)	(volts)	volts)
	DCAA	126.8	[M-H] ⁻	82.9	[M-COOH]-	-13	-11	-20	-12
	TCAA	116.8	[M-COOH] ⁻	34.8	[³⁵ C1] ⁻	-19	-16	-20	-10
	BrO_{3}^{-}	128.7	[⁸¹ BrO ₃] ⁻	112.8	$[^{81}BrO_2]^-$	-29	-14	-60	-9

 Table S1. Optimized MRM parameters for DCAA, TCAA, and bromate

Table S2. The ${}^{s}_{s}pK_{a} / \log \alpha / \log K_{ow}^{*}$ values of ammonia / HAAs, and pH values of mobile phase versus proportion of acetonitrile as Solvent B in mobile phase (with aqueous ammonia as Solvent A comprising the remaining %)

Acetonitrile	proportion		75%		85%	95%
Ammonia conc. (M) in Solvent A		0.02	0.1	0.4	0.4	0.4
a _{s of amines}			1.074		1.061	0.964
b_s of amines			-0.513		0.483	2.014
$s^{s}pK_{a}$ of ammonia			9.46		10.34	10.97
Ammonia conc. (M) in mobile phase		0.005	0.025	0.100	0.060	0.020
Calculated pH of mobile phase		10.56	10.92	11.23	11.55	11.59
^a s of aliphatic carboxylic acids			1.342		1.482	1.790
b_s of aliphatic carboxylic acids			2.028		3.342	6.529
^S mV	DCAA		3.72		5.21	8.79
spr _a	TCAA		2.71		4.10	7.44
1	DCAA	-6.48	-7.20	-7.51	-6.34	-2.81
logα	TCAA	-7.85	-8.21	-8.52	-7.45	-4.15
$1 \sim K^*$	DCAA	-5.92	-6.28	-6.59	-5.42	-1.89
logK _{ow}	TCAA	-6.52	-6.88	-7.19	-6.12	-2.82

	Calibration Linear range(µg/L)	correlation coefficient
DCAA	0.5-100	0.9956
TCAA	0.5-100	0.9978
BrO_{3}^{-}	0.5-100	0.9990

Table S3. Linearity of standard solution calibration curves

Fig. S1. Extracted ion chromatograms of DCAA (10 μ g/L), TCAA (10 μ g/L), and BrO₃⁻ (5 μ g/L) in the mixed standards using 25% pure water + 75% acetonitrile as the mobile phases in an isocratic elution mode, with elution from Dionex Ionpac AG18 column (2 mm × 50 mm).