Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Tungsten disulphide nanosheet modulated fluorescent gold nanoclusters immunoprobe for the Detection of Tau peptide: Alzheimer's disease Biomarker

Merin K Abraham¹, Anju S Madanan¹, Susan Varghese¹, Ali Ibrahim Shkhair¹, Geneva Indongo¹, Greeshma Rajeevan¹, Arathy B Kala¹, Dr Sony George^{*±1}

Supporting Information

Figure.S1. a) The DLS and zeta potential plot of BSA-AuNCs obtained as ~14.9 nm, b) and -3.8 mV respectively.

S2.

Figure.S2. The EDS spectra of synthesised BSA-AuNCs.

Figure.S3. a) The DLS and zeta potential graph of mAb-Tau conjugated BSA-AuNCs which is obtained as ~21.2 nm, b) and -0.5 mV respectively.

Figure.S4. a) The DLS and zeta potential graph of WS₂ nanosheet quenched mAb-Tau conjugated BSA-AuNCs (WS₂ NS@mAb-Tau@ which is obtained as ~35.9 nm, b) and -6.5 mV respectively.

S5.

Figure.S5. The zeta potential value of synthesised WS₂ nanosheet is obtained as -18.2 mV.

Figure.86. The EDS spectra of synthesised WS_2 Nanosheets

S6.

Figure.S7. a) The DLS and zeta potential plot of tau peptide added WS_2 nanosheet quenched mAb-Tau conjugated BSA-AuNCs (Tau@WS₂ NS@mAb-Tau@ which is obtained as ~43.9 nm, **b)** and -1.5 mV respectively.

SL.	Sensing platform	Method	LOD	Reference
No				
1.	ECL three electrode system	ECL	0.034 ng/mL	1
2.	Sandwich assay	SERS	25 fM	2
3.	3D-SERS platform	SERS	0.15 ng/mL	3
4.	Biosensor based array	SPR	1 pM	4
5.	GO-FITC immunoassay	Fluorescence	6.4 ng/mL	5
6.	InP QDs/Rhodamine	Fluorescence	70-120 nM	6
7.	CuInS ₂ /ZnS core/shell QDs	Fluorescence	9.3 pM	7
8.	WS ₂ NS@mAb-tau@AuNCs	Fluorescence	6.54 pg/mL	This work

Table.S1. The comparison table depicting the previous works for the sensing of Tau peptide

Table.S2. The recovery percentage calculation tabulated for spiked Tau peptide in human serum samples.

SL.	Tau peptide Spiked	Observed	Found	Recovery
No	human serum	concentration	concentration	percentage (%)
		(pg/mL)	(pg/mL)	
1.	Sample 1	63.29	54.74	115.6
2.	Sample 2	188.67	199.90	94.37
3.	Sample 3	373.83	345.65	108.15
4.	Sample 4	495.35	480.22	103.15
5.	Sample 5	555.55	563.21	98.63
6.	Sample 6	585.41	577.44	101.37

Figure.S8. I. Photographs of a) mAb-tau@AuNCs, b) WS₂NS@mAb-tau@AuNCs, c) Tau@WS₂NS@mAb-tau@AuNCs., II. Portable Paper strip assay, where 1.BSA-AuNCs, 2. mAb-tau@AuNCs, 3. WS₂NS@mAb-tau@AuNCs and 4. Tau@WS₂NS@mAb-tau@AuNCs. (left-day light, right-UV illumination)

References

- 1 R. Jalili, S. Chenaghlou, A. Khataee, B. Khalilzadeh and M. R. Rashidi, *Molecules 2022, Vol. 27, Page 431*, 2022, **27**, 431.
- A. Zengin, U. Tamer and T. Caykara, *Biomacromolecules*, 2013, 14, 3001–3009.
- 3 M. P. Oyarzún, A. Tapia-Arellano, P. Cabrera, P. Jara-Guajardo and M. J. Kogan, *MDPI AG*, 2021, **21**, 2067.
- 4 M. P. Oyarzún, A. Tapia-Arellano, P. Cabrera, P. Jara-Guajardo and M. J. Kogan, Sensors 2021, Vol. 21, Page 2067, 2021, 21, 2067.
- 5 A. Huang, L. Zhang, W. Li, Z. Ma, S. Shuo and T. Yao, *R Soc Open Sci*,2018, **5**, 171808.
- 6 S. Thirunavukkuarasu, A. George, A. Thomas, A. Thomas, V. Vijayan and K. G. Thomas, *Journal of Physical Chemistry C*, 2018, **122**, 14168–14176.
- 7 L. Chen, J. Lin, J. Yi, Q. Weng, Y. Zhou, Z. Han, C. Li, J. Chen and Q. Zhang, *Anal Bioanal Chem*, 2019, **411**, 5277–5285.

S8.