Development of UPLC-MS/MS assay for determination of PA-PEG₈-PA polymers in rat plasma coupled with [M-H]⁻ to enhance sensitivity

Jiye Tian, Chunpeng Feng, Hongyu Xue, Jiansong You, Meiyun Shi**, Lei Yin*

^a Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.

^b School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning, 124221, China.

^c Aim Honesty Biopharmaceutical Co. LTD, Dalian, Liaoning. 116600, China.

Correspondence

Lei Yin and Meiyun Shi, School of Life and Pharmaceutical Sciences, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin 124221

E-mails: leiyin@dlut.edu.cn; shimy@dlut.edu.cn

Supplementary information

The supplementary materials included method validation for detection of PA-PEG₈-PA polymers (Figure S1) and the optimization of mobile phase (aqueous phase) for chromatographic separation of PA-PEG₈-PA and mPEG₆-PA (Figure S2).

Method validation

The procedures for method validation are shown in Fig.S1.

Items	Description
Selectivity	The blank matrix samples were individually analyzed for endogenous substances that may interfere with the target analyte.
Accuracy and precision	Accuracy and precision are based on the analysis of six replicate QC samples on three different days.
Matrix effect	Compare the peak areas of PA-PEG8-PA and IS in the precipitated protein spiked sample with those in the pure solution.
Recovery	Comparing peak areas of QC samples with those of post-extraction blank rat plasma spiked at corresponding concentrations.
Stability	Including room temperature storage stability (4 h at room temperature), autosampler stability (4 h at 4 $^{\circ}$ C), repeated freeze/thaw stability (3 cycles) and long-term stability (-30 $^{\circ}$ C for 14 d).
Low limit of quantification (LLOQ)	The lowest concentration of the calibration curve that could be determined with accuracy±20% and precision≤15%.
Calibration curve	At least six, non-zero calibrator levels covering the expected range, including LLOQ per analytical run
Dilution methodology	The effect of dilution in the analysis of plasma samples containing PA-PEG8-PA concentrations above the upper limit of the standard curve was validated by analysis of 6 replicates of rat plasma spiked with PA-PEG8-PA 20 µg/mL after dilution with blank rat plasma using a 1:20 dilution factor to 1000 ng/mL.

Fig.S1 The procedures for method validation

Chromatographic separation of $PA-PEG_8-PA$ and $mPEG_6-PA$ polymers

Formic acid should not be added in the aqueous phase, as its presence can reduce the MS intensity of PA-PEG₈-PA and mPEG₆-PA. These contents are shown in Figure S2.

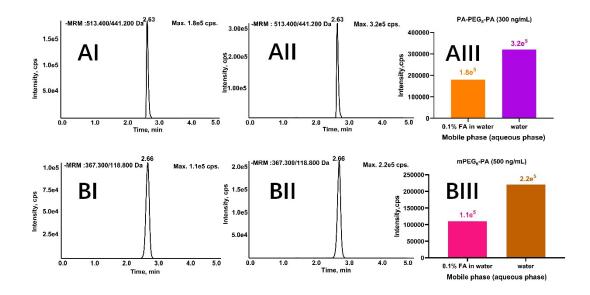


Figure S2. Optimization of UPLC conditions (aqueous phase) for chromatographic separation of PA-PEG₈-PA (A) and mPEG₆-PA (B). (AI) The aqueous phase(I), 0.1% formic acid in water; The organic phase (II), methanol; $0.0\rightarrow1.5$ min, II runs from $10\%\rightarrow10\%$; 1.5-2.0 min, II runs from $10\%\rightarrow95\%$; 2-3.5 min, II runs from $95\%\rightarrow95\%$; 3.5-3.6 min, II runs from $95\%\rightarrow10\%$; 3.6-5.0 min, II runs from $10\%\rightarrow10\%$. (AII) The aqueous phase(I), water; The organic phase (II), methanol; $0.0\rightarrow1.5$ min, II runs from $10\%\rightarrow10\%$; 1.5-2.0 min, II runs from $10\%\rightarrow95\%$; 2-3.5 min, II runs from $95\%\rightarrow95\%$; 3.5-3.6 min, II runs from $95\%\rightarrow10\%$; 3.6-5.0 min, II runs from $10\%\rightarrow10\%$. (AIII) Comparison of MS intensity of PA-PEG₈-PA with different aqueous phase (0.1% formic acid in water and water); (BI) The aqueous

phase(I), 0.1% formic acid in water; The organic phase (II), methanol; $0.0\rightarrow1.5$ min, II runs from $10\%\rightarrow10\%$; 1.5-2.0 min, II runs from $10\%\rightarrow95\%$; 2-3.5 min, II runs from $95\%\rightarrow95\%$; 3.5-3.6 min, II runs from $95\%\rightarrow10\%$; 3.6-5.0 min, II runs from $10\%\rightarrow10\%$. (BII) The aqueous phase(I), water; The organic phase (II), methanol; $0.0\rightarrow1.5$ min, II runs from $10\%\rightarrow10\%$; 1.5-2.0 min, II runs from $10\%\rightarrow95\%$; 2-3.5 min, II runs from $95\%\rightarrow95\%$; 3.5-3.6 min, II runs from $95\%\rightarrow10\%$; 3.6-5.0 min, II runs from $10\%\rightarrow10\%$. (BIII) Comparison of MS intensity of mPEG₆-PA with different aqueous phase (0.1% formic acid in water and water);